Designs for Phase I Trials of Combinations of Agents

Mark Conaway, University of Virginia Nolan Wages, University of Virginia John O'Quigley, Université de Paris VI Alexia Iasonos, Memorial Sloan-Kettering

ENAR meeting 2012. Washington, DC

Outline

- Brief description of single agent phase I trials
- Examples of combination-agent trials
 - Enumerate all orderings
 - Many orderings
- Problems with small sample size and large number of possible "treatments" (combinations of agents)

Single Agent Phase I Trials

- Typical statistical set-up:
 - Preset dose levels $d_1 < d_2 < ... < d_K$
 - Binary measure of toxicity

 π_j = Prob patient receiving dose level j experiences a "dose-limiting toxicity" (DLT)

 Primary goal: Find maximum tolerated dose (MTD)

Single Agent Phase I trials

- MTD: highest dose that can be administered with an "acceptable" level of toxicity
 - "acceptable": Probability of toxicity is no more than a pre-specified amount
 - Often 20% or 33%
- Ethical considerations dictate that trials are done sequentially
 - Patients not allocated to dose level d_j unless levels
 d₁, ..., d_{j-1} are believed to be "safe"

Many designs proposed in this setting

- Traditional (or "standard" or "3 + 3")
- Storer 2-stage
- Up-and-down
- Continual Reassessment Method (CRM)
- Recently proposed Bayesian methods

CRM set-up

- Fixed number of dose levels: d₁, d₂, ..., d_K
- Use a "working model" for the probability of toxicity at dose level j:

$$\pi_j = (\psi_j)^a$$
, where $0 < \psi_1 < \psi_2 < ... \psi_K < 1$

Ψ's are pre-set'a' is a parameter to be estimated

Two-stage, likelihood version O'Quigley and Shen, Biocs 1996

- Stage I. Use any 'non-model' type design (any of Storer's stage 1, or up-and-down or..)
 - E.g. Start at dose level 1
 - Escalate in single patient cohorts
 - Once a toxicity is observed, start stage II
- Stage II: Have toxicity and number of patients {Yj, Nj} on dose levels 1, ..., K

– Likelihood:

$$- \frac{y_i}{2} (x_i) y_i (x_j) n_i - y_i$$

Estimate 'a'

- Estimate a by maximum likelihood (\widehat{a})
- Plug back into working model

$$\psi_1{}^{\hat{a}}, \psi_2{}^{\hat{a}}, ..., \psi_K{}^{\hat{a}}$$

 Next patient goes on dose level closest to target toxicity probability that defines the MTD

2-stage CRM

 Continue 'estimate/allocate' cycle until a fixed number of patients have been observed

 MTD estimate is recommended dose level for the next patient

 CRM has excellent statistical properties in terms of identifying the MTD

Partially-ordered trials

•

Combination	Pacitaxel	Carboplati n
1	54	6
2	67.5	6
3	81	6
4	94.5	6
5	67.5	7.5
6	67.5	9

Toxicity probabilities follow a "partial order" : there exist pairs of combinations for which the ordering of toxicity probabilities is not known

Patnaik et al. (2000, Journal of Clin Onc)

Compare to single agent trials

• Same:

Need to do the dose allocation sequentially

• Different

Toxicity probabilities follow a partial order

Wages, Conaway and O'Quigley (2011, Clinical Trials)

 Stage 1. Single patient escalation through "zones"

• After a toxicity is observed, start stage II.

CRM for Partial Orders

- Consider each (complete) order that is consistent with the partial order.
- Intuition: If we knew which one was the "correct" order, we could just use usual CRM

Comp Order	Ordering
M1	1 - 2 - 3 - 4 - 5 - 6
M2	1 - 2 - 3 - 5 - 4 - 6
M3	1 - 2 - 3 - 5 - 6 - 4
M4	1 - 2 - 5 - 3 - 4 - 6
M5	1 - 2 - 5 - 3 - 6 - 4
M6	1 - 2 - 5 - 6 - 3 - 4

CRM for partial orders

- 'Two-parameter' version of CRM
 - One parameter indexes the ordering
 - Within a given ordering, usual CRM set-up
- The working model for the probability of toxicity for combination i in ordering M=m is

$$\psi^{a_m}_{im}$$

Example of working model

Μ	1	2	3	4	5	6
1 (1-2-3-4-5-6)	(.01) ^{a1}	(.05) ^{a1}	(.10) ^{a1}	(.20) ^{a1}	(.33) ^{a1}	(.50) ^{a1}
2 (1-2-3-5-4-6)	(.01) ^{a2}	(.05) ^{a2}	(.10) ^{a2}	(.33) ^{a2}	(.20) ^{a2}	(.50) ^{a2}
						•••,
6 (1-2-5-6-3-4)	(.01) ^{a6}	(.05) ^{a6}	(.33) ^{a6}	(.50) ^{a6}	(.10) ^{a6}	(.20) ^{a6}

Working model consistent with the ordering.

Allocation method

- As data accumulates, estimate 'a_m' for each ordering by maximum likelihood
 - Choose ordering with largest likelihood
 - Update estimate of toxicity probabilities for dose combinations within that ordering
 - Next patient goes on dose combination with the estimated toxicity probability closest to the target

How well does it work?

- Wages, Conaway and O'Quigley (2011) present results of simulations assessing how well this identifies the MTD
- Comparisons to other methods for partially ordered trials:
 - Similar to Conaway, Dunbar and Peddada (2004) in identifying MTD
 - Not as often as CRM when you know the ordering

Illustration

Combinat ion	True prob	Optimal Bench- mark	OS (1996) Correct Order	OS (1996) Incorrect Order	CDP (2004)	WCO (2011)
1	0.05	0	0	0	0.002	0
2	0.10	0.004	0.006	0.026	0.022	0.010
3	0.20	0.196	0.185	0.486	0.339	0.247
(5)	0.33	0.571	0.529	0.237	0.438	0.412
4	0.45	0.220	0.269	0.024	0.143	0.264
6	0.60	0.010	0.011	0.227	0.056	0.067
Summary		0.057	0.062	0.134	0.084	0.085
Summary: $\sum (\% recommended) \pi_i - target $						

Without over-interpreting one set of true probabilities....

- If the ordering is known, problem reduces to single agent (usual) case
 - O'Quigley & Shen design gives results similar to optimal benchmark

 If guess incorrectly at the ordering and use a method relying on that ordering, poor properties in terms of estimating MTD

For one set of true probabilities...

- WCO and CDP have similar properties
 - Other cases, one may do better than the other, but in general similar properties
 - WCO computationally simpler
- Identifies MTD less often than when true ordering is known
 - In other cases, performance can be similar to case where true ordering is known

Could we weight the orderings?

- Wages, Conaway and O'Quigley (2011, Biometrics)
 - Uses model from first patient on
 - Not a 2-stage
 - Bayesian method
 - Allows prior weighting of orderings
 - Still considers all possible orderings consistent with partial order

Combination agent trials

		Dose of agent 2		
		0	1	2
	25	1	2	3
Dose of agent 1	100	4	5	6
	400	$\overline{\mathcal{O}}$	8	9
	1600	10	(1)	12

Methods

- Thall, Millikan, Mueller, Lee (2003, Biometrics)
- Conaway, Dunbar and Peddada (2004, Biometrics)
- Wang and Ivanova (2005, Biometrics)
- Yin and Yuan
 - 2008, Stat in Med
 - 2009 Applied Stat
 - 2009 Biometrics

- Braun and Wang (2010, Biometrics)
- Thall, Nguyen, Paoletti, Kramar (2010, Biometrics)
- Braun and Alonzo (2011, Clinical Trials)
- Wages, Conaway and O'Quigley
 - Biometrics, 2011
 - Clinical Trials, 2011
 - Under review, 2012

What makes this different?

- Stage I not different
 - Escalate through zones
 - Toxicity known to increase across zones, unknown within

	0	1	2
25	Zone 1	Zone 2	Zone 3
100	Zone 2	Zone 3	Zone 4
400	Zone 3	Zone 4	Zone 5
1600	Zone 4	Zone 5	Zone 6

Why is this different? Stage II

- Is it reasonable to consider all the possible orderings?
- If choose subset:
 - Is it important to have the correct order as one of the subset?
 - If yes, would that imply the subset should be large?
 - If no, would that imply the subset could be small?
 - Note: In the previous, the "correct" order was always in the set because we considered all of them

How to choose orderings?

- Type/dose of agents may give a 'natural' ordering
- Previous uses of these agents
- Spread them out over the design space
 (J. Huesing)
- Choose 'generic' orders
 - Conjecture: these are sufficiently spread across the design space

Recommended set of orders

• Across columns

• Down Rows:

1-4-7-10-2-5-8-11-3-6-9-12

	2	3
4	5	6
7	8	9
(10)	(11)	(12)

Recommended set of orders

• Diagonal '1'

1-2-4-3-5-7-6-8-10-9-11-12

• Diagonal '1' reversed within zones

1-4-2-7-5-3-10-8-6-11-9-12

A couple more possibilities

• 'Switchback 1'

1-2-4-7-5-3-6-8-10-11-9-12

• 'Switchback 2'

1-4-2-3-5-7-10-8-6-9-11-12

1	2	3
4	5	6
\bigcirc	8	9
10	1	(12)

What effect does the choice have?

• Wages, O'Quigley and Conaway (submitted) investigate a 4 x 4 case

• Consider the use of 3, 6, or 9 orders

 Answer is complicated: depends on where MTD is in the table

In general

- 6 chosen orders
 - provides a good compromise even when 'true' ordering is not one of the set.
 - At times, can perform nearly as well as knowing the ordering.

Summary

- Generalization of CRM to partial orders
 - Good properties when it is possible to enumerate all orderings
- When it is not possible to enumerate orderings
 - Can incorporate prior knowledge of orderings
 - Has good properties when 'general' choice of orderings is used.