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Background

Dose-finding trials
Overview

I Initial safety studies

I Participants are sequentially assigned to doses based on
accumulating safety data

I Primary objective is to recommend a dose for further testing for
efficacy in Phase II from a set of doses

I The highest dose with an “acceptable” rate of dose-limiting toxicity
(DLT; yes/no), defined by protocol specific adverse events

I Maximum tolerated dose (MTD)
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Background

Dose-finding trials
Traditional paradigm

I Dose levels are ordered with respect to probability of DLT (and
efficacy).

I Estimate of the MTD does not account for patient heterogeneity.

I Binary DLT endpoint observed in early cycles drives dose
allocation and MTD recommendation.
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Background

Dose-finding trials
Contemporary paradigm

I A changing landscape. . .
I Ordering of probabilities between some study dose levels may be

unknown (drug combinations).
I Objective may be to recommend group-specific MTDs

(heterogeneous groups).
I Design may be based on toxicity and efficacy (multiple endpoints).
I Relevant toxicity events may occur in later cycles (late or chronic

toxicities).
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Background

Design framework
Drug combinations

I Structure is to escalate two or more agents

Doses of Agent A
1 2 3

Doses of Agent B

1

2

3
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Background

Drug combination studies
Challenges

I If • is safe, where do we go next? • or •?

Doses of Agent A
1 2 3

Doses of Agent B

1

2

3
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Background

Drug combination studies
Challenges

Doses of Agent A
1 2 3

Doses of Agent B

1

2

3

Escalate

UnknownDe-escalate

Unknown
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Background

Popular approach to drug combinations
Assume an ordering

I Choose a search path with a known ordering and apply a single
agent method

Doses of Agent A
1 2 3

Doses of Agent B

1

2

3
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Background

Drug combination studies
What is commonly used?

I Literature review over January 2011 and December 20131

I 847 references retrieved
I 162 papers reported drug-combination in which at least two

agents were escalated
I In 88% a traditional or modified 3+3 dose-escalation design was

used
I All except one trial used a design developed for single-agent

evaluation

I Novel methods for combinations are not commonly used
I Only a portion of possible combinations may be explored

1Riviere M-K, et al. Ann Oncol 2015; 26: 669–74.
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Methods

Breast 49 study
Open to accrual (NCT03473639)

I A Phase I Study of the combination of Entinostat with
Capecitabine in high risk breast cancer after neoadjuvant therapy.

I Objective: identify the maximum tolerated dose combination
(MTDC) defined by DLT rate closest to target θ = 25%

Doses of Capecitabine
Entinostat 800 mg/m2 1000 mg/m2

5 mg d3 d4

3 mg d1 d2

PI: Patrick Dillon, MD
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Methods

Breast 49 study
Open to accrual (NCT03473639)

I Let R(dj) denote the probability of DLT at combination dj.

I Is R(d2) > R(d3) or is R(d3) > R(d2)?

Toxicity Doses of Capecitabine
increases Entinostat 800 mg/m2 1000 mg/m2

↑ 5 mg d3 d4

↑ 3 mg d1 d2

Toxicity increases −→

PI: Patrick Dillon, MD
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Methods

Multiple possible orderings
DLT probabilities

Combination
d1 d2 d3 d4

% DLT

10

20

30

40

R(d2) < R(d3)

(a) Ordering 1

Combination
d1 d2 d3 d4

% DLT

10

20

30

40

R(d3) < R(d2)

(b) Ordering 2
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Methods

Partial Order Continual Reassessment Method
POCRM1

I Extension of continual reassessment method (CRM) using
multiple one-parameter models that represent possible orderings

1. Choose the ordering that is most consistent with the data.
2. Within the chosen ordering, use CRM to estimate DLT probabilities

and allocate combinations

I The working model for the probability of DLT at combination dj
under possible ordering m is

R(dj) = Pr(DLT at combination dj) ≈ α
exp(am)
mj

1Wages NA, Conaway MR, O’Quigley J. Biometrics 2011; 67: 1555–63.
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Methods

Working model illustration
Breast 49 study

Combinations
Ordering d1 d2 d3 d4

m = 1 0.25exp(a1) 0.35exp(a1) 0.46exp(a1) 0.56exp(a1)

m = 2 0.25exp(a2) 0.46exp(a2) 0.35exp(a2) 0.56exp(a2)
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Methods

Class of Working Models
POCRM

I Let m index the working models

I Under working model m, probability of DLT at dj is

R(dj) ≈ ψm(dj, am) = α
exp(am)
mj

where αmj is the skeleton of the model m

I Prior on the working models

p = {p(1), . . . , p(M)}
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Methods

Likelihood and Prior
POCRM

I Data: D = {yj,nj}, # DLT’s and patients at each combo

I Likelihood under model m

Lm(D | am) ∝
K∏

j=1

(
ψm(dj, am)

)yj
(

1− ψm(dj, am)
)nj−yj

I Prior gm(am) on am
am ∼ N (0, σ2

am)

Nolan A. Wages, PhD (UVA) Dana-Farber Cancer Institute February 13, 2019 17 / 41



Methods

Sequential Bayesian Model Choice
POCRM

I Posterior model probability for m is

π(m | D) =
p(m)

∫
Lm(D | am)gm(am)dam

M∑
m=1

p(m)

∫
Lm(D | am)gm(am)dam

I After each inclusion, choose model h such that

h = arg max
m

π(m | D)
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Methods

DLT Probability Estimates
POCRM

I Estimated DLT probability at each combination

R̃(dj) =

∫
ψh(dj, ah)

Lh(D | ah)gh(ah)∫
Lh(D | ah)gh(ah)dah

dah

I Recommend combination closest to the target DLT rate θ

ν̃ = arg min
j
|R̃(dj)− θ|

I Assign the next cohort to ν̃

I Observe DLT outcome(s) of new cohort and repeat model
selection / estimation
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Methods

Trial conclusion
Maximum sample size N participants

I Stop the trial for safety if the lowest combination is deemed too
toxic as evaluated by the posterior probability of DLT at d1

I Continual accrual until ns participants have been treated on a
combination or to maximum accrual

I MTDC is the recommended combination. . .
I that has already been administered to ns participants or
I that would have been administered to participant N + 1
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Methods

How Do We Evaluate Design Performance?
Accuracy

I How often does a method correctly identify the MTD?
I Simulate data under a wide range of true (assumed) dose-toxicity

curves
I What happens if true dose-toxicity curve is flat? Steep?
I What happens if true MTD is at d2? Or at d3?

I Repeat trial simulation many times (i.e. 1000).

I Count the number (percentage) of times each combination is
recommended as MTD at the conclusion of trial.
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Methods

Simulation Study
Setting

I Compare POCRM to 3+3 and CRM using a fixed path with
assumed ordering.

d1 → d2 → d3 → d4

I Assess performance when this assumption is true and when it is
violated.

I The 3+3 design will stop with at most 6 patients on a combo and
either (1) declare an MTD or (2) declare the lowest combo is too
toxic

I Model-based designs will either (1) accrue to the maximum
sample size to determine MTD or (2) stop the trial if the model
indicates the lowest combination is too toxic.
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Methods

Simulation Study
Setting

I Two assumed sets of true DLT probabilities

I Target DLT rate is θ = 0.25

I Maximum sample size is 24 patients.

I 1000 simulated trials.

Scenario 1 Scenario 2

Doses of Capecitabine Capecitabine
Entinostat 800 mg/m2 1000 mg/m2 800 mg/m2 1000 mg/m2

5 mg 0.25 0.35 0.15 0.35
3 mg 0.10 0.15 0.10 0.25
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Methods

Scenario 1
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Methods

Scenario 2
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Methods

Mel 58
Completed (NCT01585350)

I Phase I trial of a toll-like receptor (TLR) agonists,
lipopolysaccharide (LPS), with or without a form of incomplete
Freund’s adjuvant (IFA).

I IFA subgroups
V0 IFA is not administered with any of the 6 vaccines
V1 IFA is administered just with the first vaccine
V6 IFA is administered with all 6 vaccines

I 4 doses of LPS (25, 100, 400, 1600 EU)
I Objective: determine MTDC of LPS and IFA

PI: Craig Slingluff, MD

Melssen MM, Petroni GR, Wages NA, et al. J Immunother Cancer 2019; in review

Nolan A. Wages, PhD (UVA) Dana-Farber Cancer Institute February 13, 2019 26 / 41



Methods

Mel 58
Completed (NCT01585350)

I Phase I trial of a toll-like receptor (TLR) agonists,
lipopolysaccharide (LPS), with or without a form of incomplete
Freund’s adjuvant (IFA).

Doses of IFA
LPS V0 V1 V6
1600
400
100
25

PI: Craig Slingluff, MD

Melssen MM, Petroni GR, Wages NA, et al. J Immunother Cancer 2019; in review
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Methods

Design specifications
Orderings and priors

I We may not be able to enumerate all possible orderings in large
grids

I A “default” set works well in many situations1

I Order by rows, columns, diagonals of the matrix

I For skeleton, we can lean on the algorithms of Lee and Cheung,3

1. Use getprior function in R package dfcrm
2. Arrange skeleton values to correspond to possible orderings
3. Algorithm for prior variance σ2

am
yields least informative normal prior

in terms of which dose is the MTD

1Wages NA, Conaway MR. Pharm Stat 2013; 12: 217–24

2Lee SM, Cheung YK. Clin Trials 2009; 6: 227–38

3Lee SM, Cheung YK. Stat Med 2011; 30: 2081–9
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Adaptations

Heterogeneous Groups of Patients
Accrual completed (NCT02145286)

I Groups are defined by good/poor prognosis

I Goal is to find MTD in each group (MTD2 ≤ MTD1)

I Total of 8 “group-dose combinations” labeled d1, . . . , d8

Doses (Gy)
Group 8 10 12.5 15

2 (Poor prognosis) d5 d6 d7 d8

1 (Good prognosis) d1 d2 d3 d4

Wages NA, Read PW, Petroni GR. Pharm Stat 2015; 14: 302–10.
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Adaptations

Group studies
What is commonly used?

I Parallel independent trials using single-agent design

I No formal borrowing of information across groups
I Reversal: MTD estimates that are counter to the known ordering

I i.e., Poor prognosis has higher MTD than Good prognosis

I Inefficiency: lack of sharing of information yields less accurate
MTD estimates
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Adaptations

Group studies
Do combo methods apply?

I Mathematically, it appears combination methods would apply to
groups but. . .

I There are some important distinctions
I We don’t get to choose both row and column for allocation
I Model can choose column, but the patient chooses the row
I Randomization between rows is not an option
I What if it is expected to have a 75%/25% split between the groups?
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Adaptations

Relative Location of MTDs
Shifts between groups

I {Shift = 0}

d5 d6 d7 d8

d1 d2 d3 d4

I {Shift = 1}

d5 d6 d7 d8

d1 d2 d3 d4

I {Shift = 2}

d5 d6 d7 d8

d1 d2 d3 d4

I {Shift = 3}

d5 d6 d7 d8

d1 d2 d3 d4
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Adaptations

Working Models Under Various Shifts

Doses in Gy
Model group 8 10 12.5 15
m = 1 2 - Poor 0.03exp(a1) 0.07exp(a1) 0.13exp(a1) 0.20exp(a1)

1 - Good 0.03exp(a1) 0.07exp(a1) 0.13exp(a1) 0.20exp(a1)

m = 2 2 - Poor 0.07exp(a2) 0.13exp(a2) 0.20exp(a2) 0.29exp(a2)

1 - Good 0.03exp(a2) 0.07exp(a2) 0.13exp(a2) 0.20exp(a2)

m = 3 2 - Poor 0.13exp(a3) 0.20exp(a3) 0.29exp(a3) 0.38exp(a3)

1 - Good 0.03exp(a3) 0.07exp(a3) 0.13exp(a3) 0.20exp(a3)

m = 4 2 - Poor 0.20exp(a4) 0.29exp(a4) 0.38exp(a4) 0.47exp(a4)

1 - Good 0.03exp(a4) 0.07exp(a4) 0.13exp(a4) 0.20exp(a4)
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Adaptations

Allocation Algorithm in Groups

I Estimate which model is best represented by the data

I Under chosen model, estimate DLT probabilities for all group-dose
combinations

I Allocate patients to dose with estimate rate closest to target, in
respective group

I MTD’s are doses that would be recommended in each group at
the conclusion of the trial
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Adaptations

Other completed studies
Multiple endpoints

I Cancer vaccine studies in melanoma based on safety and biologic
activity endpoints (NCT02126579, NCT02425306)

I Regimens are partially ordered but not a matrix of drug
combinations

I Phase Ib study of ABT-199 and ibrutinib in mantle cell lymphoma
based on safety and efficacy (CR+PR) at 2 months from start of
treatment (NCT02419560)

I Efficacy may increase or plateau with increasing dose level or each
agent
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Conclusions

Concluding remarks

I Number of working models increases as dimension/complexity of
problem grows

I Design has good operating characteristics
I extension of well-known CRM

I Can be adapted for application in a broad class of partial order
problems

I R code for simulation and implementation available at http:
//faculty.virginia.edu/model-based_dose-finding/
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Conclusions

Implementation of novel dose-finding methods

“As research statisticians, it is our responsibility not only to
develop new and better designs, but to shepherd new methods

into clinical practice.”

I Huang B, Bycott P, Talukder E. J Biopharm Stat 2017; 27: 44–55.
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Conclusions

Implementation of novel dose-finding methods1

I Novel statistical methods are being developed but not used.

I Single-agent design structure should not limit goals of the study.
I Requirements:

I time, effort, and personnel
I attention to detail up-front
I strong communication, team effort
I statistical expertise throughout
I available software
I flexible clinical research management system

1Petroni GR, Wages NA, et al. Stat Med 2017; 36: 215–24.
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Conclusions

R Shiny Web Applications
https://uvatrapps.shinyapps.io/crmb/
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Conclusions

Future work1

Early and late toxicities

I Dosing decisions historically guided by binary DLT events
occurring in early cycles of treatment

I Appropriate for cytotoxic chemotherapy

I Patients on targeted/immune therapies are on therapy longer
I Fewer acute DLTs; more in later cycles
I Chronic lower grade toxicities over several cycles result in dose

reductions

I Require designs that refine recommended doses based on richer
toxicity information

1R01CA229414 (PI: Wages); review pending 2/14/19.
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