Model-based design for the early development of cancer immunotherapy combinations

Nolan A. Wages, PhD

Division of Translational Research & Applied Statistics Biostatistics Shared Resource University of Virginia Cancer Center

August 2, 2017

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Vaccine-based Immunotherapy

Challenges

- Regimens often demonstrate minimal toxicity
- Higher regimens may not correlate with greater immune response
- Goal: locate optimal biological regimen
 - a safe regimen demonstrating the greatest immunogenicity, based on some pre-defined measure of immune response

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Protocol-specific immunologic endpoints indicate biologic activity and drive the design

Motivating Application (MEL63) NCT02425306

Early-phase evaluation of safety and immunogenicity of a vaccine comprised of a mixture of 6 synthetic melanoma helper peptides (6MHP) administered with one of three local adjuvant combinations, (IFA, IFA + polyICLC, AS-15); alone or with systematic low-dose cyclophosphamide (mCy)

Regimens (\mathcal{X})	Zone	6MHP+
<i>x</i> ₁	1	IFA
<i>x</i> ₂	1	AS-15
<i>x</i> ₃	1	IFA+PolyICLC
<i>x</i> ₄	2	IFA+ mCy
x ₅	2	AS-15+ mCy
x ₆	2	IFA+PolyICLC+ mCy

Design Considerations

Motivating Application

Binary measures of DLT and immune response (IR)

$$Y_1 = \begin{cases} 0 & \text{if no DLT,} \\ 1 & \text{if DLT} \end{cases} \quad Y_2 = \begin{cases} 0 & \text{if no IR,} \\ 1 & \text{if IR.} \end{cases}$$

- DLT: protocol-specific adverse events assessed using CTCAE v4.03.
- IR:
 5-fold increase in IR measured by CD4+ T-cells during time period of vaccine administration
- ▶ Probability of observing outcome Y_i at regimen x_j by $\pi_i(x_j)$; i = 1, 2; j = 1, ..., J.

Trial Objective

► Based on the target toxicity upper bound φ₁, define the maximum tolerated regimen (MTR), ν ∈ {1,...,J}, as

$$\nu \equiv \arg\min_j |\pi_1(r_j) - \phi_1|.$$

The primary objective of the study is to identify the regimen x_j that maximizes the activity of a regimen (MAR) according to the utility function

$$u(x_j) = \pi_2(x_j) \times \mathcal{I}\big(\pi_1(x_j) \le \pi_1(x_\nu)\big),$$

where $\mathcal{I}(\cdot)$ is a function indicating whether the probability of DLT at x_j is less than that of the probability of DLT at the MTR.

Safety assumptions

Motivating Application

- Assumption: the addition of mCy does increase the probability of DLT.
 - e.g. $\pi_1(x_1) \le \pi_1(x_4)$
 - Based on data from a series of previous melanoma studies at UVA
- Unknown whether regimens have higher or lower DLT probabilities than other regimens within the same zone.

• $\pi_1(d_2) < \pi_1(d_3)$ or that $\pi_1(d_3) < \pi_1(d_2)$.

Overall strategy: formulate a set of working models, indexed by k₁, that represent various possible relationships between the regimens and the DLT probabilities.

Partial Order

DLT Probabilities

1.
$$k_1 = 1: \pi_1(x_1) < \pi_1(x_2) < \pi_1(x_3) < \pi_1(x_4) < \pi_1(x_5) < \pi_1(x_6)$$

2. $k_1 = 2: \pi_1(x_1) < \pi_1(x_3) < \pi_1(x_2) < \pi_1(x_4) < \pi_1(x_6) < \pi_1(x_5)$
3. $k_1 = 3: \pi_1(x_2) < \pi_1(x_1) < \pi_1(x_3) < \pi_1(x_5) < \pi_1(x_4) < \pi_1(x_6)$
4. $k_1 = 4: \pi_1(x_2) < \pi_1(x_3) < \pi_1(x_1) < \pi_1(x_5) < \pi_1(x_6) < \pi_1(x_4)$
5. $k_1 = 5: \pi_1(x_3) < \pi_1(x_1) < \pi_1(x_2) < \pi_1(x_6) < \pi_1(x_4) < \pi_1(x_5)$
6. $k_1 = 6: \pi_1(x_3) < \pi_1(x_2) < \pi_1(x_1) < \pi_1(x_6) < \pi_1(x_5) < \pi_1(x_4)$

 Strategy: reflect order uncertainty through multiple "CRM-like" skeletons / one-parameter working models

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Class of Working Models

Skeletons for DLT Probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Activity assumptions

- 1. IFA generates the highest immunogenecity
- 2. AS-15 generates the highest immunogenecity
- 3. IFA+Poly-ICLC generates the highest immunogenecity
- 4. Within each of these assumptions:
 - (a) The addition of cyclophosphimide (mCy) increases immunogenecity

(ロ) (同) (三) (三) (三) (○) (○)

(b) Immunogenecity plateaus with the addition of cyclophosphimide (mCy)

Class of Working Models

Skeletons for activity probabilities

Class of Regimen-Outcome Models

For each outcome *i*

- ► K_1 possible working models (skeletons) for DLT indexed by $k_1 \in \{1, ..., K_1\}$
- K₂ possible working models (skeletons) for activity indexed by k₂ ∈ {1,...,K₂}
- Probability of observing Y_i at regimen x_i is given by

$$\pi_{ij} = \Pr(Y_i = 1 | x_j) = F_{k_i}(x_j, \beta_{ik_i}) \approx \left(p_{ij}(k_i)\right)^{\exp(\beta_{ik_i})}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

under working model M_{ik_i} .

Likelihood and Prior

For each outcome *i*

- Data is $\mathcal{D}_i = \{(y_{ij}, n_{ij}) : i = 1, 2; j = 1, \dots, J\}$
- Likelihood under working model M_{iki}

$$\mathcal{L}(\mathcal{D}_i | eta_{ik_i}, M_{ik_i}) \propto \prod_{j=1}^J \left(F_{k_i}(x_j, eta_{ik_i})
ight)^{y_{ij}} \left(1 - F_{k_i}(x_j, eta_{ik_i})
ight)^{n_{ij} - y_{ij}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Prior probabilities on M_{ik_i} are $P(M_{ik_i})$
- Prior distribution on β_{ik_i} is $g(\beta_{ik_i}|M_{ik_i})$

Sequential Bayesian Model Choice

For each outcome *i*

Posterior probability for model M_{iki} is

$$P(M_{ik_i}|D_i) = \frac{\mathcal{L}(\mathcal{D}_i|M_{ik_i})P(M_{ik_i})}{\sum_{k_i=1}^{K_i} \mathcal{L}(\mathcal{D}_i|M_{ik_i})P(M_{ik_i})}$$

► *For each outcome* Y_i , choose a single model $h_i \in \{1, ..., K_i\}$ such that

$$M_{ih_i} = \arg\max_{M_{ik_i}} P(M_{ik_i} | D_i)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Probability Estimates

For each outcome *i*

 Posterior mean for the probability of outcome *i* at regimen x_j

$$\widehat{\pi}_{ij} = \int F_{h_i}(x_j, \beta_{ih_i}) \frac{\mathcal{L}(\mathcal{D}_i | \beta_{ih_i}, M_{ih_i}) g(\beta_{ih_i} | M_{ih_i})}{\int \mathcal{L}(\mathcal{D}_i | \beta_{ih_i}, M_{ih_i}) g(\beta_{ih_i} | M_{ih_i}) d\beta_{ih_i}} d\beta_{ih_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Trail conduct

Stage 1: MTR-based allocation

- Treat the first cohort of patients at the physician-specified combination.
- After each cohort, estimate the MTD ν̃ as the combination with estimated DLT probability closest to the target toxicity upper bound φ₁ such that

$$\widetilde{\nu} = \arg\min_j |\widetilde{\pi}_1(x_j) - \phi_1|.$$

- Allocate the next cohort of patients to
- Otherwise, once the number of patients accrued to the study exceeds the stage 1 sample size n₁, go to Stage 2.

Trail conduct

Stage 2: MAR-based allocation

► After each cohort inclusion, estimate the utility function using the probability estimates *π*_{ij}

$$\widetilde{u}(x_j) = \widetilde{\pi}_{2j} \times I(\widetilde{\pi}_{1j} \le \widetilde{\pi}_{1\widetilde{\nu}})$$

• Allocate the next cohort of patients to x_m that maximizes \tilde{u}_i

$$x_m = \arg\max_j \widetilde{u}_j$$

Once the maximum sample size, N, is reached, the optimal biological combination (OBC) is defined as the combination x_m that would have been administered to the next cohort, had one been included.

Trail conduct

Stopping rules

 If, at any point, the "lowest" combination is deemed too toxic, as evaluated by

 $\Pr(\pi_{1\ell} > \phi_1 | \mathcal{D}_1) > 0.95,$

then **stop the trial for safety**, and no combination is recommended.

Based on a lower limit of desirable activity φ₂, if, in stage 2 the MAR x_m is deemed to have to little activity, as evaluated by

$$\Pr(\pi_{2m} < \phi_2 | \mathcal{D}_2) > 0.95,$$

then **stop the trial for futility**, and no combination is recommended. In a small study, it may undesirable to stop the trial for futility.

Simulation Setting

- 1000 simulated trials
- Maximum sample size N = 70
 - Cohort size is 2
 - Accrual will end if recommendation is to assign next patient to regimen that already has treated 30 patients.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Uniform prior on working models

$$\blacktriangleright \ \beta_{ik_i} \sim \mathcal{N}(0,2)$$

•
$$\phi_1 = 0.20; \ \phi_2 = 0.30;$$

Operating Characteristics

True π_{1j}	0.05	0.01	0.07	0.08	0.17	0.18
True π_{2j}	0.19	0.15	0.30	0.50	0.40	0.70
Selection %	2.5	0.5	6.9	17.4	7.1	65.4
# of pts	3.4	2.8	5.1	8.2	6.3	21.3
True π_{1j}	0.05	0.01	0.07	0.08	0.17	0.18
True π_{2j}	0.35	0.40	0.60	0.35	0.40	0.60
Selection %	4.4	7.0	49.3	2.8	5.8	30.7
# of pts	4.5	5.3	16.9	4.6	6.4	12.9
True π_{1i}	0.05	0.01	0.07	0.08	0.17	0.18
True π_{2j}	0.40	0.15	0.30	0.60	0.35	0.40
Selection %	20.0	0.4	6.1	53.7	6.2	13.6
# of pts	9.2	2.9	4.7	18.2	6.5	8.9

Design Flexibility NCT02126579

 Early phase trial of a Long Peptide Vaccine (LPV7) plus TLR Agonists (MEL60)

Zone	Regimen	LPV7+
1	<i>x</i> ₁	IFA
1	<i>x</i> ₂	PolyICLC
1	x_3	Resiquimod
2	x_4	IFA+PolyICLC
2	x_5	IFA+Resiquimod
2	<i>x</i> ₆	Resiquimod+PolyICLC
3	<i>x</i> ₇	IFA+PolyICLC+Resiquimod

An Ongoing Study

 Early-phase study of evaluating safety and immunogenicity of 3 schedules of Pembro, with and without IL-2 and GMCSF. Schedules are designated by time of Pembro administration.

	Pembro Schedule			
		Sch 1	Sch 2	Sch 3
IL-2/	Yes	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₆
GM-CSF	No	x_1	<i>x</i> ₂	x_4

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An Ongoing Study NCT02419560

- Early-phase study of ibrutinib with ABT-199 in relapsed/refractory mantle cell lymphoma. (open to accrual)
- Efficacy: response (CR+PR) at 2 months from start of treatment

		Ibrutinib (mg/day)		
		280 420 560		
ABT-199	400	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₆
(mg/day)	200	x_1	<i>x</i> ₂	x_4

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusions

- Number of working models increases as dimension/complexity of problem grows
- Use available data at time decision needs to be made
 - even if amount of DLT data differs from amount of IR data
- Design performs well in terms of
 - selecting true optimal regimens in a high percentage of trials
 - allocating a high percentage of patients to regimens at and around optimal regimens

(ロ) (同) (三) (三) (三) (○) (○)

 Can be applied to a broad class of partial order problems using multiple endpoints

Acknowledgements

- Funding:
 - NCI: K25181638
 - Mel 63: U01CAA178846
- Collaborators:
 - Craig Slingluff, MD
 - Gina Petroni, PhD
 - Lawrence Lum, MD
 - Patrick Dillon, MD
 - Craig A. Portell, MD

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thank You!