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Background

Traditional Dose-finding

I Primary goal for a cytotoxic agent is to identify MTD

I Recommended dose further investigated in Phase II to evaluate
efficacy

I Common assumption for cytotoxics is both efficacy and toxicity
increase monotonically with dose

I Recent development of molecularly targeted agents (MTA’s)
challenges this assumption
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Background

Dose-finding For Molecularly Targeted Agents

I Toxicity may be minimal
I Often reasonable to assume monotonicity

I Dose-efficacy curves may be non-monotonic
I Goal is to find optimal biological dose (OBD)

I Defined by dose with acceptable toxicity that maximizes efficacy
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Background

Published Methods For MTA’s

I Hunsberger, Rubinstein, Dancey, Korn; Statist Med 2005

I Mandrekar, Cui, Sargent; Statist Med 2007

I Polley, Cheung; Biometrics 2008

I Hoering, LeBlanc, Crowley; Clin Cancer Res 2011

I Hoering, Mitchell, LeBlanc, Crowley; Clin Trials 2013

I Yin, Zheng, Xu; Statist Med 2013
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Background

Non-monotone Dose-efficacy Curves

I May exhibit unimodal or plateau relationships
I Increase initially, then decrease or remain constant

I Suppose we have a set of I doses, {d1, . . . , dI} and probability of
efficacy at di is denoted, πE(di)

I The goal is to find OBD, dν ∈ {d1, . . . , dI}, defined by

πE(d1) ≤ · · · ≤ πE(dν) ≥ · · · ≥ πE(dI).
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Background

Possible Dose-toxicity/efficacy Curves

Yin, Zheng, Xu; Statist Med 2013
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Background

Example

I Phase I study of Bavituximab in patients with advanced solid
tumors (Gerber et al.; Clinical Cancer Research, 2011)

I Four available dose levels (0.1, 0.3, 1, 3 mg/kg)

I Goal of the study was dose escalation to the OBD, rather than
MTD

I “. . . for monoclonal antibodies, the MTD may not correspond to
optimal efficacy. . . ”
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Background

Overall Strategy

I dν corresponds to the peak of unimodal curve or beginning of
plateau

I Peak could occur at any of the I available levels
I Non-decreasing probabilities before the peak, non-increasing

probabilities after peak

I Overall strategy is to formulate a set of possible dose-efficacy
relationships corresponding to various “peak” locations
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Background

Possible Dose-efficacy Curves

1. monotone decreasing: peak at d1
πE(d4) ≤ πE(d3) ≤ πE(d2) ≤ πE(d1)

2. monotone increasing: peak at d4
πE(d1) ≤ πE(d2) ≤ πE(d3) ≤ πE(d4).

3. unimodal or plateau: peak at d2
πE(d1) ≤ πE(d3) ≤ πE(d4) ≤ πE(d2)

4. unimodal or plateau: peak at d3
πE(d1) ≤ πE(d2) ≤ πE(d4) ≤ πE(d3).
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Models & Inference

Modeling Toxicity - CRM

I The probability of DLT at dose level di is

πT(di) ≈ F(di, β) = pexp(β)
i

I After j inclusions, DLT probability estimates

π̂T(di) = F(di, β̂j)

define an acceptable set of doses based on a maximum
acceptable toxicity rate φT
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Models & Inference

Models For Efficacy

I Suppose there are K dose-efficacy model possibilities under
investigation.

I For a particular model, k, the probability of efficacy modeled by

πE(di) ≈ Gk(di, θ) = qexp(θ)
ik

for a class of working dose-efficacy models, Gk(di, θ)

I 0 < q1k < · · · < qIk < 1 represents the skeleton of model k.
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Models & Inference

Inference

I Prior probabilities on each model τ(k) = {τ(1), . . . , τ(K)} and prior
distribution, g(θ), on θ

I After inclusion of the first j patients into the study, the likelihood
under model k is given by

Lk(θ | Dj) =

j∏
`=1

{Gk(x`, θ)}z`{1− Gk(x`, θ)}(1−z`)

which, for each model, can be used in order to generate the
posterior mean, θ̂jk, of parameter θ.
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Models & Inference

Model Selection

I The posterior probabilities of the models given the data are

ω(k | Dj) =

τ(k)
∫

Lk(θ | Dj)g(θ)dθ

K∑
k=1

τ(k)
∫

Lk(θ | Dj)g(θ)dθ

.

I When a new patient is to be enrolled, we choose a single model,
k∗, with the largest posterior probability such that

k∗ = arg max
k
ω(k | Dj)
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Models & Inference

Model Selection in CRM

I Bayesian model averaging CRM (Yin, Yuan; JASA 2009)

I Extended model-based designs for more complex dose-finding
studies (O’Quigley, Conaway; Statist Med 2011)

I Posterior maximization and averaging for Bayesian working model
choice in the CRM (Daimon, Zohar, O’Quigley; Statist Med 2011)

I CRM for partial ordering (Wages, Conaway, O’Quigley; Biometrics
2011)
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Models & Inference

Efficacy Probability Estimates

I Take the working model, Gk∗(di, θ), associated with k∗ to generate
efficacy probability estimates at each dose.

I Compute the posterior probability of a response for di

π̂E(di) = Gk∗(di, θ̂jk∗)

from which we can make decisions regarding allocation.
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Dose-finding Algorithm

Dose-finding Algorithm

I Overall, allocate the next entered patient to the dose estimated to
be the most efficacious, among those with acceptable toxicity.

I Define the set of “acceptable” doses as

Aj = {di : π̂T(di) ≤ φT; i = 1, . . . , I}.

I The allocation algorithm depends upon the amount of data that
has been observed so far in the trial.
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Dose-finding Algorithm

Randomization Phase

I For doses in Aj, calculate a randomization probability Ri,

Ri =
π̂E(di)∑

di∈Aj

π̂E(di)

and randomize the next patient or cohort of patients to dose di
with probability Ri.

I Switch to a phase in which we simply allocate according to the
maximum estimated efficacy probability among the acceptable
doses.

Nolan A. Wages (University of Virginia) Dose-finding for MTA’s September 26 - 27, 2013 18 / 30



Dose-finding Algorithm

Maximization Phase

I Among the doses contained in Aj, we allocate the (j + 1)th patient
cohort to the dose xj+1 according to the estimated efficacy
probabilities, π̂E(di), such that

xj+1 = arg max
di∈Aj

π̂E(di)

I The optimal dose is the recommended dose di = xn+1 for the
hypothetical (n + 1)th patient after the inclusion of the maximum
sample size of n patients.
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Simulation Studies

Design Specifications

I Skeleton for toxicity, pi = {0.01, 0.08, 0.15, 0.22, 0.29, 0.36}
I Define maximum acceptable toxicity rate φT = 0.33

I Total sample size N = 48

I Randomization phase sample size nR = 12

I Each of the k models has Normal prior distribution on θ

g(θ) ∼ N (0, 1.34)
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Simulation Studies

Skeletons For Unimodal Relationships

I peak at d6[k = 1]
{0.10, 0.20, 0.30, 0.40, 0.50, 0.60}

I peak at d5[k = 2]
{0.20, 0.30, 0.40, 0.50, 0.60, 0.50}

I peak at d4[k = 3]
{0.30, 0.40, 0.50, 0.60, 0.50, 0.40}

I peak at d3[k = 4]
{0.40, 0.50, 0.60, 0.50, 0.40, 0.30}

I peak at d2[k = 5]
{0.50, 0.60, 0.50, 0.40, 0.30, 0.20}

I peak at d1[k = 6]
{0.60, 0.50, 0.40, 0.30, 0.20, 0.10}
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Simulation Studies

Skeletons For Plateau Relationships

I plateau at d1[k = 7]
{0.60, 0.60, 0.60, 0.60, 0.60, 0.60}

I plateau at d2[k = 8]
{0.50, 0.60, 0.60, 0.60, 0.60, 0.60}

I plateau at d3[k = 9]
{0.40, 0.50, 0.60, 0.60, 0.60, 0.60}

I plateau at d4[k = 10]
{0.30, 0.40, 0.50, 0.60, 0.60, 0.60}

I plateau at d5[k = 11]
{0.20, 0.30, 0.40, 0.50, 0.60, 0.60}

I Assume, a priori, that each skeleton is equally likely and set
τ(k) = 1/11
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Simulation Studies

Association Between Toxicity & Efficacy

I Association between toxicity and efficacy is ignored in modeling

I Simulation studies assess the sensitivity of method to association
between toxicity and efficacy

I Correlated binary responses generated under various values of
association parameter ψ

I Results presented with ψ = 4.6 as in Hoering et al. (Clinical Trials,
2013)
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Simulation Studies

Dose-finding in Hoering et al. (2013)

I 3+3 design in Phase I to find recommend dose (RD) for Phase II
I In Phase II, randomize 48 patients to one of three arms (dose

levels)
I RD−1, RD, RD+1

I Choose dose with highest efficacy that is also safe (DLT rate ≤
33%.

I Authors define best dose as the level that maximizes efficacy
while assuring safety; good dose as level where efficacy is above
predefined boundary while maintaining safety.
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Simulation Studies

Hoering et al. Scenarios
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Simulation Studies

Simulation Results
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Simulation Studies

Unimodal Dose-efficacy Curves

I Scenario 1 (πT, πE)
I {(0.05, 0.20), (0.10, 0.40), (0.25, 0.60), (0.45, 0.80), (0.60, 0.55)}
I Peak of d-e curve occurs outside acceptable set

I Scenario 2 (πT, πE)
I {(0.08, 0.20), (0.12, 0.40), (0.20, 0.60), (0.30, 0.80), (0.42, 0.55)}
I Peak of d-e curve occurs at edge of acceptable set

I Scenario 3 (πT, πE)
I {(0.06, 0.20), (0.08, 0.40), (0.14, 0.60), (0.20, 0.80), (0.30, 0.55)}
I Peak of d-e curve occurs inside acceptable set
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Simulation Studies

Results

True DLT prob. 0.05 0.10 0.25 0.45 0.60
True Eff prob. 0.20 0.40 0.60 0.80 0.55
% selection 0.04 0.19 0.53 0.24 0.00
% allocation 0.12 0.26 0.35 0.23 0.03

True DLT prob. 0.08 0.12 0.20 0.30 0.42
True Eff prob. 0.20 0.40 0.60 0.80 0.55
% selection 0.04 0.17 0.29 0.50 0.01
% allocation 0.13 0.23 0.25 0.34 0.05

True DLT prob. 0.06 0.08 0.14 0.20 0.30
True Eff prob. 0.20 0.40 0.60 0.80 0.55
% selection 0.04 0.13 0.19 0.62 0.03
% allocation 0.10 0.19 0.20 0.43 0.07

N = 30; nR = 10; φT = 0.35, ψ = −2
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Simulation Studies

Conclusions

I Bivariate extension of CRM for effectively estimating optimal dose
in early-phase trials of targeted agents.

I Good operating characteristics when compared to published
method in area.

I Extension includes relaxing monotonicity assumption for toxicity
I For trials of dual-agent combinations
I Use partial order CRM (Wages, Conaway, O’Quigley; Biometrics

2011) to estimate DLT probabilities

I Exploring stopping rules for toxicity and efficacy

I Modifications for delayed response outcomes
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Simulation Studies
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