Continual Reassessment Method for Partially Ordered Groups

Bethany Jablonski Horton, Ph.D. Nolan Wages, Ph.D. and Mark Conaway, Ph.D.

JSM

August 3, 2017

Funding Disclosure

- In collaboration with Mark Conaway and Nolan Wages
- Research reported in this presentation is supported by the National Cancer Institute of the National Institutes of Health under award numbers
 - R01CA142859 (M. R. C. and B. J. H.) and
 - K25CA181638 (N. A.W.)

Outline of Talk

- Background on methods for groups
- Proposed method for partially ordered groups
- Simulation study

Existing methods

- The proposed method is extension of the 2 group shift model
 - O'Quigley and Paoletti (2003)
 - O'Quigley and lasonos (2014)
- Phase I design for completely or partially ordered treatment schedules
 - Wages, O'Quigley, Conaway (2014)
- Partially ordered groups
 - Conaway (2017)

Example of a group trial

- Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer.
 - Innocenti et al. (2014)
 - ► Three patient groups defined by *1/*1, *1/*28, and *28/*28 genotypes
 - Greatest DLT risk associated with the *28/*28 genotype
 - Individual group trials implemented using a modified 6+6 design
 - MTD selection followed known ordering information (no reversals)

		MTD Selection					
Group	Grp Identity	All too toxic	1	2	3	4	
1	less frail	✓					
2	less frail				\checkmark		
3	most frail					\checkmark	

- Reversal of magnitude 4 between groups 1 and 3
- Reversal of magnitude 1 between groups 2 and 3

What is the final MTD decision for each group?

- Skeleton values of length 7 generated with getprior function in the dfcrm package
 - 4 doses and potential shift of 3 dose levels
 - skeleton values: 0.10, 0.19, 0.30, 0.42, 0.54, 0.64, 0.73
- Multiple skeletons generated to allow for different shift patterns

Group	Grp Identity	1	2	3	4
3	most frail	0.10	0.19	0.30	0.42
2	less frail	0.10	0.19	0.30	0.42
1	less frail	0.10	0.19	0.30	0.42

No dose level shifts

Dose level shifts of 1, 2, and 3 for Group 3

Group	Grp Identity	1	2	3	4
3	most frail	0.19	0.30	0.42	0.54
2	less frail	0.10	0.19	0.30	0.42
1	less frail	0.10	0.19	0.30	0.42
Group	Grp Identity	1	2	3	4
3	most frail	0.30	0.42	0.54	0.64
2	less frail	0.10	0.19	0.30	0.42
1	less frail	0.10	0.19	0.30	0.42
Group	Grp Identity	1	2	3	4
3	most frail	0.42	0.54	0.64	0.73
2	less frail	0.10	0.19	0.30	0.42
1	less frail	0.10	0.19	0.30	0.42

Dose level shifts of 1 and 2 between the groups

Group	Grp Identity	1	2	3	4
3	most frail	0.30	0.42	0.54	0.64
2	less frail	0.19	0.30	0.42	0.54
1	less frail	0.10	0.19	0.30	0.42

Group	Grp Identity	1	2	3	4
3	most frail	0.30	0.42	0.54	0.64
2	less frail	0.10	0.19	0.30	0.42
1	less frail	0.19	0.30	0.42	0.54

- 16 skeletons generated to allow for different shift patterns
- Use one parameter power model as a working model for the probability of toxicity for each group and dose level
- Select the skeleton that maximizes the likelihood
- Within groups, identify the dose with probability of toxicity closest to the target

- Patient group order is random
- ▶ A "less frail" (groups 1 and 2) patient can receive the highest dose observed +1
- A "most frail" (group 3) patient can receive the highest dose observed among patients in group 3 +1

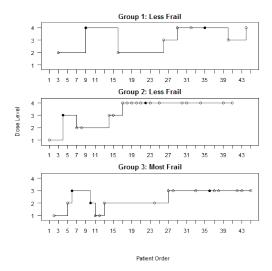
Patient	Group	Grp Identity	Dose	DLT
1	3	most frail	1	no
2	2	less frail		
3	2	less frail		
4	3	most frail		
5	1	less frail		
:	:	:		

- Patient group order is random
- ▶ A "less frail" (groups 1 and 2) patient can receive the highest dose observed +1
- A "most frail" (group 3) patient can receive the highest dose observed among patients in group 3 +1

Patient	Group	Grp Identity	Dose	DLT
1	3	most frail	1	no
2	2	less frail	2	no
3	2	less frail		
4	3	most frail		
5	1	less frail		
:	:	÷		

- Patient group order is random
- ▶ A "less frail" (groups 1 and 2) patient can receive the highest dose observed +1
- A "most frail" (group 3) patient can receive the highest dose observed among patients in group 3 +1

Patient	Group	Grp Identity	Dose	DLT
1	3	most frail	1	no
2	2	less frail	2	no
3	2	less frail	3	no
4	3	most frail		
5	1	less frail		
:	÷	:		

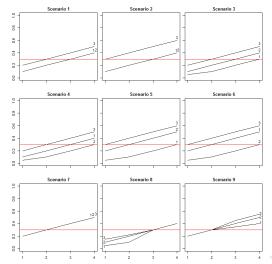

- Patient group order is random
- ▶ A "less frail" (groups 1 and 2) patient can receive the highest dose observed +1
- A "most frail" (group 3) patient can receive the highest dose observed among patients in group 3 +1

Patient	Group	Grp Identity	Dose	DLT
1	3	most frail	1	no
2	2	less frail	2	no
3	2	less frail	3	no
4	3	most frail	2	no
5	1	less frail		
:	÷	:		

- Patient group order is random
- ▶ A "less frail" (groups 1 and 2) patient can receive the highest dose observed +1
- A "most frail" (group 3) patient can receive the highest dose observed among patients in group 3 +1

Patient	Group	Grp Identity	Dose	DLT
1	3	most frail	1	no
2	2	less frail	2	no
3	2	less frail	3	no
4	3	most frail	2	no
5	1	less frail	4	yes
End stage 1. Begin modeling.				

Individual trial



Simulation setup

- 3 groups
 - Group 3 has greatest DLT risk
 - Unknown order between groups 1 and 2
- 4 dose levels
- ▶ Target DLT rate, $\theta = 0.3$
- 1,000 simulated trials
- Sample size of 45 overall
 - Group sizes are random
- Same simulated data used for both methods

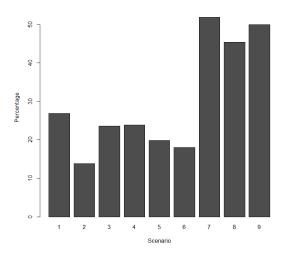
Dose-toxicity curves

9 scenarios considered

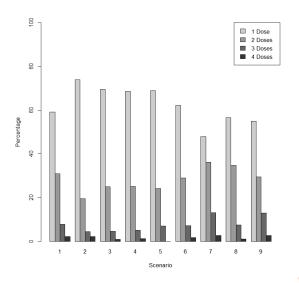
Comparisons to be made

- Dose finding methods
 - Proposed CRM for partially ordered groups
 - Individual CRM trials by group
- Method of comparison
 - Reversals
 - Percentage of correct selection (PCS)
 - Accuracy index (AI) (Cheung, 2011)
 - For dose selection and subject allocation

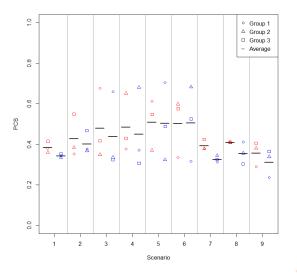
Reversals


- CRM for partially ordered groups cannot have reversals
- Individual trials by group can have reversals
 - May observe 0 to 2 reversals
 - Magnitude of reversal ranges from 1 to 4 dose levels

		MTD Selection					
Group	Grp Identity	All too toxic	1	2	3	4	
1	less frail	✓					
2	less frail				\checkmark		
3	most frail					\checkmark	

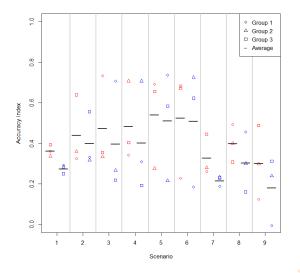

- Reversal of magnitude 4 between groups 1 and 3
- Reversal of magnitude 1 between groups 2 and 3

What is the final MTD decision for each group?

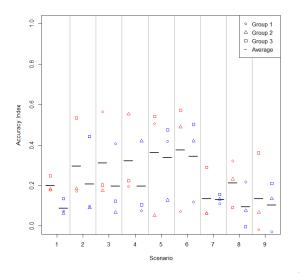


- Scenarios 2 6
- More distance between true group MTDs
- Scenarios 7 9
- All groups have same true MTD

- Scenarios 2 6
- More distance between true group MTDs
- Scenarios 7 9
- All groups have same true MTD


Percentage of correct selection

- Scenarios 2 4
- Max. shift of 2 dose levels
- Scenarios 5 6
- Max. shift of 3 dose levels
- Scenarios 7 9
- All groups have same true MTD


Accuracy index for dose selection

- Scenarios 2 4
- Max. shift of 2 dose levels
- Scenarios 5 6
- Max. shift of 3 dose levels
- Scenarios 7 9
- All groups have same true MTD

Accuracy index for subject allocation

- Scenarios 2 4
- Max. shift of 2 dose levels
- Scenarios 5 6
- Max. shift of 3 dose levels
 - Scenarios 7 9
- All groups have same true MTD

Dose-toxicity curves

- Limited options with partially ordered groups
- Reversals are a common problem when using independent trials by group
 - Creates a need for additional decision rules
 - Ignoring reversals is not a good option
- PCS and AI have better properties for the proposed CRM for partially ordered groups