Phase I design for locating schedule-specific maximum tolerated doses

Nolan A. Wages, Ph.D.

University of Virginia Division of Translational Research & Applied Statistics Department of Public Health Sciences Biostatistics Shared Resource

June 13, 2016

Outline of Talk

- Challenges associated with dose-schedule studies
- Method for locating schedule-specific MTD's
- Operating characteristics
- Conclusions

Dose-schedule Finding

Background

- Dose regimens based on
 - amount of agent given
 - If frequency with which it is administered
- Each course of therapy is a distinct dose-schedule combination
- Goal is to account for schedule effects in dose-finding design

Dose-schedule Finding

Design Challenges

- The objective of the trial may be to determine an MTD in each schedule.
 - Estimate an MTD equivalence contour
- ② DLT probabilities of dose-schedule combinations follow partial order
 - If current dose-schedule combo is safe, may not be clear where to go next.
- Oimension of the problem may be large
 - Many combos to consider

Dose-schedule combinations

General Notation

- Consider a study investigating multiple schedules
 - *I* ordered schedules: $s_1 < \cdots < s_l$
 - ▶ J dose levels of the agent under each schedule: $x_1 < \cdots < x_J$
- $d_{ij} = (s_i, x_j)$ is the combination of schedule s_i and dose level x_j
- Probability of DLT at combination d_{ij} is denoted $R(d_{ij})$

Two schedules Supplemental Figure 1 Graux *et al.* (2013)

- A phase I dose-escalation study of MSC1992371A, an oral inhibitor of aurora and other kinases, in advanced hematologic malignancies
- Schedule 1 = days 1–3 and 8–10 on 21-day cycle
- Schedule 2 = days 1–6 on 21-day cycle
- Schedule 2 considered "more intense"

Schedule		Doses in mg/m ² /day						
2	3	6	10	15	21	28	37	47
1	3	6	10	15	21	28	37	47

Combination-toxicity Relationships

Assumptions

- Toxicity increases with increasing dose of each agent, holding the schedule fixed
- Toxicity increases with increasing intensity of the schedule, holding the dose fixed
- DLT probabilities increase up rows and across columns of matrix

		<i>x</i> ₁	<i>x</i> ₂	• • •	<i>x</i> 8
\uparrow	<i>s</i> ₂	<i>d</i> ₂₁	d ₂₂	• • •	d ₂₈
\uparrow	<i>s</i> 1	d ₁₁	d_{12}	•••	d_{18}
то	XICITY	\rightarrow	\longrightarrow	\longrightarrow	\rightarrow
INCREASES					

Primary Objective Find Multiple MTD's

- Goal: find an MTD for each schedule i
- Locate $\nu_i = d_{ij^*}$; $j^* \in \{1, \ldots, J\}$ such that d_{ij^*} has DLT probability closest to the target rate θ for each $i (i = 1, \ldots, I)$
 - i.e. find an MTD in each row *i* such that

$$u_i = rg\min_j |R(d_{ij}) - heta|$$

Toxicity Assumptions Affect on MTD Location

- Schedule 2 is assumed to be more toxic, so its MTD will be at dose lower than or equal to the MTD in Schedule 1
- For instance, suppose MTD in Schedule 1 is estimated to be d_{16}
 - ▶ In Schedule 2, MTD level must be lower than or equal to d_{26} (i.e. d_{21}, \ldots, d_{26})

Implemented Trial Design Graux *et al.* (2013)

- Conducted using parallel 3+3 designs in each schedule.
- Within each schedule, these parallel trials produce an MTD estimate
 - Fail to use ordering information among dose-schedule regimens
- Parallel studies could produce reversals
 - MTD estimates contradict what is known clinically about toxicity
 - Results in MTD of schedule 2 being at a higher dose than MTD of schedule 1

Relative Location of MTD's Shift Model**

- If MTD for s_1 is $\nu_1 = d_{1j^*}$, then the MTD for s_2 is $\nu_2 = \nu_1 \Delta_2$; $\Delta_2 = 0, 1, 2, \dots$
- Sensible to restrict Δ_2 to a small set of values
 - MTD's most likely to be 0, 1, 2, 3 levels away
- Use the data to estimate the relative location of the MTD between rows
- Similar strategy has been used for drug combinations* and patient heterogeneity**

*Wages NA. Stat in Med 2016 [epub ahead of print].

^{**} O'Quigley J, Iasonos A. Stat Biopharm Res 2014; 6: 185-197

Relative Location of MTD's Shifts of 0 or 1

• $\{\Delta_2 = 0\}$

<i>d</i> ₂₁	d ₂₂	d ₂₃	<i>d</i> ₂₄	d ₂₅	d ₂₆	d ₂₇	d ₂₈
<i>d</i> ₁₁	d_{12}	<i>d</i> ₁₃	<i>d</i> ₁₄	d_{15}	d_{16}	d ₁₇	d_{18}

 $\bullet \ \{\Delta_2 = 1\}$

Relative Location of MTD's Shifts of 2 or 3

• $\{\Delta_2 = 2\}$

d ₂₁	<i>d</i> ₂₂	d ₂₃	<i>d</i> ₂₄	d ₂₅	d ₂₆	d ₂₇	d ₂₈
<i>d</i> ₁₁	<i>d</i> ₁₂	<i>d</i> ₁₃	<i>d</i> ₁₄	<i>d</i> ₁₅	d_{16}	<i>d</i> ₁₇	d_{18}

• $\{\Delta_2 = 3\}$

<i>d</i> ₂₁	<i>d</i> ₂₂	<i>d</i> ₂₃	<i>d</i> ₂₄	d ₂₅	d ₂₆	d ₂₇	d ₂₈
<i>d</i> ₁₁	d_{12}	d_{13}	<i>d</i> ₁₄	d ₁₅	d_{16}	d_{17}	d_{18}

- E > - E >

Working Models Targeting $\theta = 0.20$

• Model $m = 1 : \{\Delta_2 = 0\}$

0.03 ^a	0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.48 ^a	0.55 ^a
0.03 ^a	0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.48 ^a	0.55 ^a

• Model $m = 2 : \{\Delta_2 = 1\}$

0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a	0.63 ^a
0.03 ^a	0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a

- < A

.

Working Models Targeting $\theta = 0.20$

• Model $m = 3 : \{\Delta_2 = 2\}$

0.07 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a	0.63 ^a	0.70 ^a
0.03 ^a	0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a

• Model $m = 4 : \{\Delta_2 = 3\}$

0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a	0.63 ^a	0.70 ^a	0.76 ^a
0.03 ^a	0.07 ^a	0.13 ^a	0.20 ^a	0.29 ^a	0.38 ^a	0.47 ^a	0.55 ^a

Image: Image:

- 4 3 6 4 3 6

Multi-dimensional CRM

Class of Working Models

- Let *m* index the working models
- Under working model *m*, the probability of DLT at dose-schedule combination *d_{ij}* is

$$R(d_{ij}) \approx \psi_m(d_{ij}, a) = \left(\alpha_m(d_{ij})\right)^{\exp(a)}$$

where $\alpha_m(d_{ij})$ is the skeleton of the model m

• Prior on the working models

$$p = \{p(1), \ldots, p(M)\}$$

Multi-dimensional CRM

Likelihood and Prior

- Data: $\mathcal{D} = \{y_{ij}, n_{ij}\}$, # DLT's and patients at each combo
- Likelihood under model m

$$\mathcal{L}_m(\mathcal{D} \mid a) \propto \prod_{i=1}^l \prod_{j=1}^J \left(\psi_m(d_{ij}, a)
ight)^{y_{ij}} \left(1 - \psi_m(d_{ij}, a)
ight)^{n_{ij} - y_{ij}}$$

• Prior g(a) on a

 $a \sim \mathcal{N}(0, 1.34)$

Multi-dimensional CRM

Sequential Bayesian Model Choice

• Posterior model probability for *m* is

$$\pi(m \mid \mathcal{D}) = rac{p(m) \int \mathcal{L}_m(\mathcal{D} \mid a)g(a)da}{\displaystyle\sum_{m=1}^M p(m) \int \mathcal{L}_m(\mathcal{D} \mid a)g(a)da}$$

• After each inclusion, choose model h such that

$$h = \arg \max_{m} \pi(m \,|\, \mathcal{D})$$

• Estimated DLT probability at each dose-schedule regimen

$$\widetilde{R}(d_{ij}) = \int \psi_h(d_{ij}, a) rac{\mathcal{L}_h(\mathcal{D} \mid a)g(a)}{\int \mathcal{L}_h(\mathcal{D} \mid a)g(a)da} da$$

 \bullet Form a set $\mathcal{S}=\{\widetilde{\nu}_1,\widetilde{\nu}_2\}$ of recommended doses such that

$$\widetilde{
u}_i = rg \min_j |\widetilde{R}(d_{ij}) - heta|$$

• Randomize the next cohort to a treatment in ${\mathcal S}$

Trial Design & Conduct

- **1** Begin at the lowest dose-schedule combination d_{11}
- On not skip doses within a schedule when escalating
- **3** At any point, stop the trial for safety if d_{11} is too toxic

$$\Pr\left(R(d_{11}) > \theta \left| \mathcal{D}\right) > 0.90$$

S is the set of MTD estimates in each schedule after maximum sample size is reached

A Simulation Study

- Target toxicity rate $\theta = 0.20$
- 2 1000 simulated trials
- **3** Total sample size n = 60
 - Compare with a parallel CRM design using n = 30 in each schedule

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8
<i>s</i> ₂	0.08	0.13	0.20	0.29	0.40	0.52	0.63	0.73
s_1	0.06	0.09	0.14	0.22	0.31	0.43	0.53	0.65

A Simulation Study Percent of MTD Selection

• CRM shift model design

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8
<i>s</i> ₂	5.7	25.1	46.4	21.7	1.1	0.0	0.0	0.0
s_1	0.3	4.6	30.9	43.7	17.6	2.8	0.1	0.0

• Parallel CRM designs*

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	<i>X</i> 7	<i>x</i> 8
s ₂	3.5	24.2	42.7	24.8	4.6	0.2	0.0	0.0
s_1	0.8	8.1	33.4	39.8	16.2	1.5	0.2	0.0

*Parallel design results in 'reversal' in 18.6% of simulated trials.

Nolan A. Wages, Ph.D.

Conclusions

- The design presented in this talk
 - can be extended to more than 2 schedules
 - performs well in terms of identifying multiple MTDs
 - allocating a high percentage of patients to doses at and around true MTDs (not shown)
 - protects the study from reversals
- Method compares favorably with alternative methods in the area (not shown)
 - Wang and Ivanova (Stat Med, 2005)
 - Yuan and Yin (Stat Med, 2008)

Thank you! Questions?

- Collaborators
 - John O'Quigley, Ph.D.
 - Mark R. Conaway, Ph.D.
 - Alexia Iasonos, Ph.D.
- NIH/NCI funding:
 - K25CA181638 (PI: Wages)
 - R01CA142859 (PI: Conaway)