Identifying multiple MTD combinations in two-dimensional dose-finding

Nolan A. Wages

University of Virginia

April 15, 2015

Outline of Talk

- Challenges associated with Drug combination studies
- Method for locating multiple MTD combinations
- Operating characteristics
- Conclusions
- Extension to other two-dimensional problems

Drug combinations

Notation

- Consider a two-drug combination study
- Agent A has I dose levels: $A_{1}<\cdots<A_{I}$
- Agent B has J dose levels: $B_{1}<\cdots<B_{J}$
- $\left(A_{j}, B_{k}\right)$ is the combination of Agent A at dose level j and Agent B at dose level j
- Probability of DLT at combination $\left(A_{i}, B_{j}\right)$ is denoted $\pi_{i j}$
- Goal: find maximum tolerated dose combinations (MTDC's)

Drug Combination Studies

Challenges

1. Toxicity order of the dose combinations is only partially known

- If current combination is safe, may not be clear where to go next.

2. Dimension of the problem may be large

- Many combinations to consider

3. Multiple MTD combinations may exist in the two-dimensional space

- MTD equivalence contour

Drug Combination Studies

Challenges

Drug Combination Studies

Design Considerations

- Is the objective of the trial to find a...

1. single MTDC?
2. MTD equivalence contour containing multiple combinations?

Recent Methods

Single MTD Combination

- Hirakawa, Hamada, Matsui (Stat Med, 2013)
- Braun and Jia (Stat Biopharm Res, 2013)
- Jin, Huo, Yin, Yuan (Pharm Stat, 2015)
- Mander and Sweeting (Stat Med, 2015)

Existing Methods

Multiple MTD Combinations

- Thall, Millikan, Mueller, Lee (Biometrics, 2003)
- Ivanova and Wang (Stat Med, 2004)
- Wang and Ivanova (Biometrics, 2005)
- Yuan and Yin (Stat Med, 2008)
- Tighiouart, Piantidosi, Rogatko (Stat Med, 2014)

Review of Harrington et al., 2013

Table 1 | Summary of features for various dual-agent dose escalation study designs

Study	Number of model parameters	Stages	Outcomes	Response values	Number of RP2D combinations
Model-based designs					
Wang and Ivanova $(2005)^{60}$	3	2	Toxicity	Binary	Minimum number of doses of drug A or drug B
Yin and Yuan (2009) ${ }^{62}$	3	2	Toxicity	Binary	1
Yin and Yuan (2009) ${ }^{63}$	3	2	Toxicity	Binary	1
Kramar et al. (1999) ${ }^{61}$	2	2	Toxicity	Binary	1
Su (2010) ${ }^{64}$	1	3	Toxicity	Binary	1
Thall et al. (2003) ${ }^{31}$	6	2	Toxicity	Binary	3
Conaway et al. $(2004)^{68}$	k	2	Toxicity	Binary	1
Wages et al. (2011) ${ }^{70}$	$M^{ \pm}$	2	Toxicity	Binary	1
Wages et al. (2011) ${ }^{69}$	$M^{ \pm}$	1	Toxicity	Binary	1
Braun and Wang (2010) ${ }^{30}$	6	1	Toxicity	Binary	1
Bailey et al. (2009) ${ }^{67}$	$\geq 3^{5}$	1	Toxicity	Binary	1

Partial Order Continual Reassessment Method

Wages, Conaway, O'Quigley (2011)

- POCRM has been applied in several ongoing/completed studies*
- Question: Can POCRM select more than one MTD combination?
*Wages, Conaway, Slingluff, Williams, Portell, Hwu, Petroni. Ann Oncol 2015; [epub ahead of print].

Example

Two agents A and B

- Phase I trial of two small molecule inhibitors in patients in relapsed/refractory mantle cell lymphoma.
- Agent A has 2 dose levels: $A_{1}<A_{2}$
- Agent B has 4 dose levels: $B_{1}<B_{2}<B_{3}<B_{4}$

	Doses of B				
		B_{1}	B_{2}	B_{3}	B_{4}
Doses	A_{2}	$\left(A_{2}, B_{1}\right)$	$\left(A_{2}, B_{2}\right)$	$\left(A_{2}, B_{3}\right)$	$\left(A_{2}, B_{4}\right)$
of A	A_{1}	$\left(A_{1}, B_{1}\right)$	$\left(A_{1}, B_{2}\right)$	$\left(A_{1}, B_{3}\right)$	$\left(A_{1}, B_{4}\right)$

Primary Objective

Find Multiple MTD's

- Goal: find an MTDC for each dose of Agent A
- Locate $j^{*} \in\{1, \ldots, 4\}$ such that $\left(A_{i}, B_{j^{*}}\right)$ has DLT probability closest to the target rate ϕ for each $i(i=1,2)$
- i.e. find an MTD combination in each row i such that

$$
\left(A_{i}, B_{j^{*}}\right)=\arg \min \left|\pi_{i j}-\phi\right|
$$

Combination-toxicity Relationships

Assumptions

- Toxicity increases with increasing dose of each agent, holding the other agent fixed
- DLT probabilities increase up rows and across columns of matrix

		B_{1}	B_{2}	B_{3}	B_{4}
\uparrow	A_{2}	$\left(A_{2}, B_{1}\right)$	$\left(A_{2}, B_{2}\right)$	$\left(A_{2}, B_{3}\right)$	$\left(A_{2}, B_{4}\right)$
\uparrow	A_{1}	$\left(A_{1}, B_{1}\right)$	$\left(A_{1}, B_{2}\right)$	$\left(A_{1}, B_{3}\right)$	$\left(A_{1}, B_{4}\right)$
TOXICITY INCREASES	\longrightarrow	\longrightarrow	\longrightarrow	\longrightarrow	

Combination-toxicity Relationships

Affect on MTD Location

- Row 1 is at least the most toxic MTDC (i.e. the MTDC in row 1 will contain at least the largest dose of Agent B)
- For instance, suppose MTDC in row 1 is estimated to be $\left(A_{1}, B_{3}\right)$
- If dose of A is fixed at A_{2}, MTD level of drug B must be lower than or equal to 3 (i.e. B_{1}, B_{2}, or B_{3})

$$
\begin{array}{cccc}
\hline\left(A_{2}, B_{1}\right) & \left(A_{2}, B_{2}\right) & \left(A_{2}, B_{3}\right) & \left(A_{2}, B_{4}\right) \\
\hline\left(A_{1}, B_{1}\right) & \left(A_{1}, B_{2}\right) & \left(A_{1}, B_{3}\right) & \left(A_{1}, B_{4}\right) \\
& \uparrow & \\
& & \text { MTD for } A_{1}
\end{array}
$$

Relative Location of MTD's

Shift Model*

- If MTD for A_{1} is $\left(A_{1}, B_{j^{*}}\right)$, then MTD for A_{2} is $\left(A_{2}, B_{j^{*}-\Delta_{2}}\right) ; \Delta_{2} \in\{0,1,2,3\}$
- The truth could be any one of the four possible values for Δ_{2}
- Use the data to estimate the relative location of the MTD between rows
- Similar strategy has been used for patient heterogeneity**

[^0]
Relative Location of MTD's

Shifts of 0 or 1

- $\left\{\Delta_{2}=0\right\}$

$$
\begin{array}{|llll|}
\hline\left(A_{2}, B_{1}\right) & \left(A_{2}, B_{2}\right) & \left(A_{2}, B_{3}\right) & \left(A_{2}, B_{4}\right) \\
\hline\left(A_{1}, B_{1}\right) & \left(A_{1}, B_{2}\right) & \left(A_{1}, B_{3}\right) & \left(A_{1}, B_{4}\right) \\
\hline
\end{array}
$$

- $\left\{\Delta_{2}=1\right\}$

$$
\begin{array}{|llll|}
\hline\left(A_{2}, B_{1}\right) & \left(A_{2}, B_{2}\right) & \left(A_{2}, B_{3}\right) & \left(A_{2}, B_{4}\right) \\
\hline\left(A_{1}, B_{1}\right) & \left(A_{1}, B_{2}\right) & \left(A_{1}, B_{3}\right) & \left(A_{1}, B_{4}\right) \\
\hline
\end{array}
$$

Relative Location of MTD's

Shifts of 2 or 3

- $\left\{\Delta_{2}=2\right\}$

$\left(A_{2}, B_{1}\right)$	$\left(A_{2}, B_{2}\right)$	$\left(A_{2}, B_{3}\right)$	$\left(A_{2}, B_{4}\right)$
$\left(A_{1}, B_{1}\right)$	$\left(A_{1}, B_{2}\right)$	$\left(A_{1}, B_{3}\right)$	$\left(A_{1}, B_{4}\right)$

- $\left\{\Delta_{2}=3\right\}$

$$
\begin{array}{llll}
\left(A_{2}, B_{1}\right) & \left(A_{2}, B_{2}\right) & \left(A_{2}, B_{3}\right) & \left(A_{2}, B_{4}\right) \\
\left(A_{1}, B_{1}\right) & \left(A_{1}, B_{2}\right) & \left(A_{1}, B_{3}\right) & \left(A_{1}, B_{4}\right) \\
\hline
\end{array}
$$

Working Models

Targeting $\phi=0.30$

- Model $m=1:\left\{\Delta_{2}=0\right\}$

$0.06^{\theta_{1}}$	$0.16^{\theta_{1}}$	$0.30^{\theta_{1}}$	$0.45^{\theta_{1}}$
$0.06^{\theta_{1}}$	$0.16^{\theta_{1}}$	$0.30^{\theta_{1}}$	$0.45^{\theta_{1}}$

- Model $m=2:\left\{\Delta_{2}=1\right\}$

$0.16^{\theta_{2}}$	$0.30^{\theta_{2}}$	$0.45^{\theta_{2}}$	$0.59^{\theta_{2}}$
$0.06^{\theta_{2}}$	$0.16^{\theta_{2}}$	$0.30^{\theta_{2}}$	$0.45^{\theta_{2}}$

Skeleton 1 = getprior ($0.075,0.30,3,4$)
Skeleton 2 = getprior $(0.075,0.30,2,4)$

Working Models

Targeting $\phi=0.30$

- Model $m=3:\left\{\Delta_{2}=2\right\}$

$0.30^{\theta_{3}}$	$0.45^{\theta_{3}}$	$0.59^{\theta_{3}}$	$0.71^{\theta_{3}}$
$0.06^{\theta_{3}}$	$0.16^{\theta_{3}}$	$0.30^{\theta_{3}}$	$0.45^{\theta_{3}}$

- Model $m=4:\left\{\Delta_{2}=3\right\}$

$0.30^{\theta_{4}}$	$0.45^{\theta_{4}}$	$0.59^{\theta_{4}}$	$0.71^{\theta_{4}}$
$0.01^{\theta_{4}}$	$0.06^{\theta_{4}}$	$0.16^{\theta_{4}}$	$0.30^{\theta_{4}}$

Skeleton $1=$ getprior $(0.075,0.30,1,4)$
Skeleton $2=$ getprior $(0.075,0.30,4,4)$

Getting Trial Underway

Initial Escalation Scheme

- Choose a path for initial escalation scheme
- Follow path in the absence of DLT's, until first DLT is observed

	B_{1}	B_{2}	B_{3}	B_{4}
A_{2}	$\left(A_{2}, B_{1}\right) \longrightarrow\left(A_{2}, B_{2}\right) \longrightarrow\left(A_{2}, B_{3}\right)$	$\left(A_{2}, B_{4}\right)$		
		\downarrow	\uparrow	
A_{1}	$\left(A_{1}, B_{1}\right) \longrightarrow\left(A_{1}, B_{2}\right)$	$\left(A_{1}, B_{3}\right) \longrightarrow\left(A_{1}, B_{4}\right)$		

Modeling Stage

After each cohort inclusion. . .

1. Use adaptive model selection to choose working model most consistent with data
2. Update estimates of DLT probabilities, $\widehat{\pi}_{i j}$, for each combination
3. Recommend a combination in each row with $\widehat{\pi}_{i j}$ closest to target rate ϕ

$$
S=\left\{\left(A_{1}, B_{j_{1}^{*}}\right),\left(A_{2}, B_{j_{2}^{*}}^{*}\right)\right\}
$$

4. Randomize next patient to treatment in S

Extension To More Than 2 Rows

- If MTD for A_{1} is $\left(A_{1}, B_{j^{*}}\right)$, then MTD for A_{i} is $\left(A_{i}, B_{j^{*}-\Delta_{i}}\right)$
- Each model m consists of multiple Δ values $\left\{\Delta_{2}, \Delta_{3}, \ldots, \Delta_{I}\right\}$, where $\Delta_{2} \leq \Delta_{3} \leq \cdots \leq \Delta_{I}$
- For instance, $m:\left\{\Delta_{2}=2, \Delta_{3}=3\right\}$

$\left(A_{3}, B_{1}\right)$	$\left(A_{3}, B_{2}\right)$	$\left(A_{3}, B_{3}\right)$	$\left(A_{3}, B_{4}\right)$	$\left(A_{3}, B_{5}\right)$	$\left(A_{3}, B_{6}\right)$
$\left(A_{2}, B_{1}\right)$	$\left(A_{2}, B_{2}\right)$	$\left(A_{2}, B_{3}\right)$	$\left(A_{2}, B_{4}\right)$	$\left(A_{2}, B_{5}\right)$	$\left(A_{2}, B_{6}\right)$
$\left(A_{1}, B_{1}\right)$	$\left(A_{1}, B_{2}\right)$	$\left(A_{1}, B_{3}\right)$	$\left(A_{1}, B_{4}\right)$	$\left(A_{1}, B_{5}\right)$	$\left(A_{1}, B_{6}\right)$

Simulation Studies

- Evaluated performance over four 3×6 combination-toxicity scenarios in Wang and Ivanova (2005)
- Sample size $N=60$; Target DLT rate; $\phi=0.20$
- Compared to Wang and Ivanova (2005), Yuan and Yin (2008).

Scenarios in Wang and Ivanova (2005)

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
Scenario 1						
Level 3	0.08	0.13	0.20	0.29	0.40	0.53
Level 2	0.05	0.08	0.13	0.20	0.29	0.40
Level 1	0.03	0.05	0.08	0.13	0.20	0.29
Scenario 2						
Level 3	0.05	0.08	0.11	0.15	0.21	0.29
Level 2	0.04	0.06	0.09	0.13	0.18	0.25
Level 1	0.04	0.05	0.08	0.11	0.15	0.21
Scenario 3						
Level 3	0.20	0.30	0.41	0.53	0.65	0.70
Level 2	0.10	0.20	0.25	0.32	0.41	0.50
Level 1	0.03	0.05	0.13	0.20	0.27	0.35
Scenario 4						
Level 3	0.20	0.40	0.47	0.56	0.65	0.76
Level 2	0.08	0.13	0.20	0.32	0.41	0.50
Level 1	0.03	0.05	0.08	0.13	0.17	0.20

Assessing Performance

Combined PCS

- In each row of the matrix, we are interested in how often each dose of Agent B is selected as the MTD
- Use the combined proportion of correct selection (CPCS) for each row i

Results in Scenario 1 of WI (2005)						
0.25	0.23	$\mathbf{0 . 3 3}$	0.18	0.02	0.00	
0.00	0.04	0.26	0.54	0.14	0.01	
0.00	0.03	0.13	0.53	$\mathbf{0 . 2 7}$	0.04	
CPCS $=0.33+0.54+0.27=1.14$						

Some Results

	Scenario			
Method	1	2	3	4
Proposed	1.31	1.62	1.73	1.36
WI (2005)	1.14	1.54	1.32	0.99
YY (2008)	1.03	1.25	1.46	1.04

Concluding Remarks

- R package pocrm can be used to implement design
- in the process of updating simulation functions
- Method has good properties in identifying multiple MTDCs
- compares favorably with alternative methods in the area (WI, 2005; YY, 2008)
- Method could be applied to other two-dimensional dose-finding problems
- rows could represent different treatment schedules or prognosis groups

[^0]: * O'Quigley J, Conaway MR. Stat Science 2010; 25: 202-16.
 ** O'Quigley J, lasonos A. Stat Biopharm Res 2014; 6: 185-197

