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Introduction

Outline of Talk

I Challenges associated with Drug combination studies

I Method for locating multiple MTD combinations

I Operating characteristics
I Conclusions

I Extension to other two-dimensional problems
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Introduction

Drug combinations
Notation

I Consider a two-drug combination study
I Agent A has I dose levels: A1 < · · · < AI

I Agent B has J dose levels: B1 < · · · < BJ

I (Aj,Bk) is the combination of Agent A at dose level j and Agent B
at dose level j

I Probability of DLT at combination (Ai,Bj) is denoted πij

I Goal: find maximum tolerated dose combinations (MTDC’s)
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Introduction

Drug Combination Studies
Challenges

1. Toxicity order of the dose combinations is only partially known
I If current combination is safe, may not be clear where to go next.

2. Dimension of the problem may be large
I Many combinations to consider

3. Multiple MTD combinations may exist in the two-dimensional
space

I MTD equivalence contour
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Introduction

Drug Combination Studies
Challenges
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Introduction

Drug Combination Studies
Design Considerations

I Is the objective of the trial to find a. . .

1. single MTDC?
2. MTD equivalence contour containing multiple combinations?
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Introduction

Recent Methods
Single MTD Combination

I Hirakawa, Hamada, Matsui (Stat Med, 2013)

I Braun and Jia (Stat Biopharm Res, 2013)

I Jin, Huo, Yin, Yuan (Pharm Stat, 2015)

I Mander and Sweeting (Stat Med, 2015)
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Introduction

Existing Methods
Multiple MTD Combinations

I Thall, Millikan, Mueller, Lee (Biometrics, 2003)

I Ivanova and Wang (Stat Med, 2004)

I Wang and Ivanova (Biometrics, 2005)

I Yuan and Yin (Stat Med, 2008)

I Tighiouart, Piantidosi, Rogatko (Stat Med, 2014)
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Introduction

Review of Harrington et al., 2013
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Introduction

Partial Order Continual Reassessment Method
Wages, Conaway, O’Quigley (2011)

π11

π21

π11 < π12 < π21

or
π11 < π21 < π12

π12

I POCRM has been applied in several ongoing/completed studies∗

I Question: Can POCRM select more than one MTD combination?

∗Wages, Conaway, Slingluff, Williams, Portell, Hwu, Petroni. Ann Oncol 2015; [epub ahead of print].
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Finding Multiple MTD Combinations

Example
Two agents A and B

I Phase I trial of two small molecule inhibitors in patients in
relapsed/refractory mantle cell lymphoma.

I Agent A has 2 dose levels: A1 < A2

I Agent B has 4 dose levels: B1 < B2 < B3 < B4

Doses of B
B1 B2 B3 B4

Doses A2 (A2,B1) (A2,B2) (A2,B3) (A2,B4)
of A A1 (A1,B1) (A1,B2) (A1,B3) (A1,B4)
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Finding Multiple MTD Combinations

Primary Objective
Find Multiple MTD’s

I Goal: find an MTDC for each dose of Agent A
I Locate j∗ ∈ {1, . . . , 4} such that (Ai,Bj∗) has DLT probability

closest to the target rate φ for each i (i = 1, 2)

I i.e. find an MTD combination in each row i such that

(Ai,Bj∗) = arg min |πij − φ|
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Finding Multiple MTD Combinations

Combination-toxicity Relationships
Assumptions

I Toxicity increases with increasing dose of each agent, holding the
other agent fixed

I DLT probabilities increase up rows and across columns of matrix

B1 B2 B3 B4
↑ A2 (A2,B1) (A2,B2) (A2,B3) (A2,B4)
↑ A1 (A1,B1) (A1,B2) (A1,B3) (A1,B4)

TOXICITY −→ −→ −→ −→
INCREASES
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Finding Multiple MTD Combinations

Combination-toxicity Relationships
Affect on MTD Location

I Row 1 is at least the most toxic MTDC (i.e. the MTDC in row 1 will
contain at least the largest dose of Agent B)

I For instance, suppose MTDC in row 1 is estimated to be (A1,B3)

I If dose of A is fixed at A2, MTD level of drug B must be lower than
or equal to 3 (i.e. B1,B2, or B3)

(A2,B1) (A2,B2) (A2,B3) (A2,B4)
(A1,B1) (A1,B2) (A1,B3) (A1,B4)

↑
MTD for A1
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Finding Multiple MTD Combinations

Relative Location of MTD’s
Shift Model∗

I If MTD for A1 is (A1,Bj∗), then MTD for A2 is
(A2,Bj∗−∆2); ∆2 ∈ {0, 1, 2, 3}

I The truth could be any one of the four possible values for ∆2

I Use the data to estimate the relative location of the MTD between
rows

I Similar strategy has been used for patient heterogeneity∗∗

∗O’Quigley J, Conaway MR. Stat Science 2010; 25: 202–16.

∗∗O’Quigley J, Iasonos A. Stat Biopharm Res 2014; 6: 185–197
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Finding Multiple MTD Combinations

Relative Location of MTD’s
Shifts of 0 or 1

I {∆2 = 0}

(A2,B1) (A2,B2) (A2,B3) (A2,B4)

(A1,B1) (A1,B2) (A1,B3) (A1,B4)

I {∆2 = 1}

(A2,B1) (A2,B2) (A2,B3) (A2,B4)

(A1,B1) (A1,B2) (A1,B3) (A1,B4)
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Finding Multiple MTD Combinations

Relative Location of MTD’s
Shifts of 2 or 3

I {∆2 = 2}

(A2,B1) (A2,B2) (A2,B3) (A2,B4)

(A1,B1) (A1,B2) (A1,B3) (A1,B4)

I {∆2 = 3}

(A2,B1) (A2,B2) (A2,B3) (A2,B4)

(A1,B1) (A1,B2) (A1,B3) (A1,B4)
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Finding Multiple MTD Combinations

Working Models
Targeting φ = 0.30

I Model m = 1 : {∆2 = 0}

0.06θ1 0.16θ1 0.30θ1 0.45θ1

0.06θ1 0.16θ1 0.30θ1 0.45θ1

I Model m = 2 : {∆2 = 1}

0.16θ2 0.30θ2 0.45θ2 0.59θ2

0.06θ2 0.16θ2 0.30θ2 0.45θ2

Skeleton 1 = getprior(0.075,0.30,3,4)

Skeleton 2 = getprior(0.075,0.30,2,4)
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Finding Multiple MTD Combinations

Working Models
Targeting φ = 0.30

I Model m = 3 : {∆2 = 2}

0.30θ3 0.45θ3 0.59θ3 0.71θ3

0.06θ3 0.16θ3 0.30θ3 0.45θ3

I Model m = 4 : {∆2 = 3}

0.30θ4 0.45θ4 0.59θ4 0.71θ4

0.01θ4 0.06θ4 0.16θ4 0.30θ4

Skeleton 1 = getprior(0.075,0.30,1,4)

Skeleton 2 = getprior(0.075,0.30,4,4)
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Finding Multiple MTD Combinations

Getting Trial Underway
Initial Escalation Scheme

I Choose a path for initial escalation scheme

I Follow path in the absence of DLT’s, until first DLT is observed

B1 B2 B3 B4
A2 (A2,B1) (A2,B2) (A2,B3) (A2,B4)

A1 (A1,B1) (A1,B2) (A1,B3) (A1,B4)
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Finding Multiple MTD Combinations

Modeling Stage
After each cohort inclusion. . .

1. Use adaptive model selection to choose working model most
consistent with data

2. Update estimates of DLT probabilities, π̂ij, for each combination

3. Recommend a combination in each row with π̂ij closest to target
rate φ

S = {(A1,Bj∗1 ), (A2,Bj∗2 )}

4. Randomize next patient to treatment in S

Nolan A. Wages (UVA) Paris Dose-finding Symposium April 15, 2015 21 / 27



Finding Multiple MTD Combinations

Extension To More Than 2 Rows

I If MTD for A1 is (A1,Bj∗), then MTD for Ai is (Ai,Bj∗−∆i)

I Each model m consists of multiple ∆ values {∆2,∆3, . . . ,∆I},
where ∆2 ≤ ∆3 ≤ · · · ≤ ∆I

I For instance, m : {∆2 = 2,∆3 = 3}

(A3,B1) (A3,B2) (A3,B3) (A3,B4) (A3,B5) (A3,B6)

(A2,B1) (A2,B2) (A2,B3) (A2,B4) (A2,B5) (A2,B6)

(A1,B1) (A1,B2) (A1,B3) (A1,B4) (A1,B5) (A1,B6)
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Operating Characteristics

Simulation Studies

I Evaluated performance over four 3× 6 combination-toxicity
scenarios in Wang and Ivanova (2005)

I Sample size N = 60; Target DLT rate; φ = 0.20

I Compared to Wang and Ivanova (2005), Yuan and Yin (2008).
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Operating Characteristics

Scenarios in Wang and Ivanova (2005)
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Operating Characteristics

Assessing Performance
Combined PCS

I In each row of the matrix, we are interested in how often each
dose of Agent B is selected as the MTD

I Use the combined proportion of correct selection (CPCS) for each
row i

Results in Scenario 1 of WI (2005)

0.25 0.23 0.33 0.18 0.02 0.00
0.00 0.04 0.26 0.54 0.14 0.01
0.00 0.03 0.13 0.53 0.27 0.04

CPCS = 0.33 + 0.54 + 0.27 = 1.14
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Operating Characteristics

Some Results

Scenario
Method 1 2 3 4

Proposed 1.31 1.62 1.73 1.36
WI (2005) 1.14 1.54 1.32 0.99
YY (2008) 1.03 1.25 1.46 1.04
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Conclusion

Concluding Remarks

I R package pocrm can be used to implement design
I in the process of updating simulation functions

I Method has good properties in identifying multiple MTDCs
I compares favorably with alternative methods in the area (WI, 2005;

YY, 2008)

I Method could be applied to other two-dimensional dose-finding
problems

I rows could represent different treatment schedules or prognosis
groups
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