Identifying multiple MTD combinations in two-dimensional dose-finding

Nolan A. Wages

University of Virginia

April 15, 2015

Outline of Talk

- Challenges associated with Drug combination studies
- Method for locating multiple MTD combinations
- Operating characteristics
- Conclusions
 - Extension to other two-dimensional problems

Drug combinations

- Consider a two-drug combination study
 - Agent A has I dose levels: $A_1 < \cdots < A_I$
 - Agent B has J dose levels: $B_1 < \cdots < B_J$
- ► (A_j, B_k) is the combination of Agent A at dose level j and Agent B at dose level j
- ▶ Probability of DLT at combination (A_i, B_j) is denoted π_{ij}
- Goal: find maximum tolerated dose combinations (MTDC's)

Drug Combination Studies Challenges

- 1. Toxicity order of the dose combinations is only partially known
 - If current combination is safe, may not be clear where to go next.
- Dimension of the problem may be large
 - Many combinations to consider
- Multiple MTD combinations may exist in the two-dimensional space
 - MTD equivalence contour

Drug Combination Studies

Challenges

Drug Combination Studies

Design Considerations

- Is the objective of the trial to find a...
 - 1. single MTDC?
 - 2. MTD equivalence contour containing multiple combinations?

Recent Methods

Single MTD Combination

- Hirakawa, Hamada, Matsui (Stat Med, 2013)
- Braun and Jia (Stat Biopharm Res, 2013)
- Jin, Huo, Yin, Yuan (*Pharm Stat*, 2015)
- Mander and Sweeting (Stat Med, 2015)

Existing Methods Multiple MTD Combinations

- Thall, Millikan, Mueller, Lee (Biometrics, 2003)
- Ivanova and Wang (Stat Med, 2004)
- Wang and Ivanova (*Biometrics*, 2005)
- Yuan and Yin (Stat Med, 2008)
- Tighiouart, Piantidosi, Rogatko (Stat Med, 2014)

Review of Harrington et al., 2013

Table 1 Summary of features for various dual-agent dose escalation study designs					
Study	Number of model parameters	Stages	Outcomes	Response values	Number of RP2D combinations
Model-based designs					
Wang and Ivanova (2005) ⁶⁰	3	2	Toxicity	Binary	Minimum number of doses of drug A or drug B
Yin and Yuan (2009)62	3	2	Toxicity	Binary	1
Yin and Yuan (2009)63	3	2	Toxicity	Binary	1
Kramar et al. (1999)61	2	2	Toxicity	Binary	1
Su (2010) ⁶⁴	1	3	Toxicity	Binary	1
Thall et al. (2003) ³¹	6	2	Toxicity	Binary	3
Conaway et al. (2004) ⁶⁸	К	2	Toxicity	Binary	1
Wages et al. (2011)70	M‡	2	Toxicity	Binary	1
Wages et al. (2011) ⁶⁹	M‡	1	Toxicity	Binary	1
Braun and Wang (2010) ⁸⁰	6	1	Toxicity	Binary	1
Bailey et al. (2009)67	≥3§	1	Toxicity	Binary	1
					4 T N 4 T N 4 T 900

Nolan A. Wages (UVA)

April 15, 2015 9 / 27

Partial Order Continual Reassessment Method

Wages, Conaway, O'Quigley (2011)

POCRM has been applied in several ongoing/completed studies*

Question: Can POCRM select more than one MTD combination?

*Wages, Conaway, Slingluff, Williams, Portell, Hwu, Petroni. Ann Oncol 2015; [epub ahead of print].

Nolan A. Wages (UVA)

Paris Dose-finding Symposium

Example Two agents A and B

- Phase I trial of two small molecule inhibitors in patients in relapsed/refractory mantle cell lymphoma.
- Agent A has 2 dose levels: $A_1 < A_2$
- Agent B has 4 dose levels: $B_1 < B_2 < B_3 < B_4$

		Doses of B				
		B_1	B_2	B_3	B_4	
Doses	A_2	(A_2, B_1)	(A_2, B_2)	(A_2, B_3)	(A_2, B_4)	
of A	A_1	(A_1,B_1)	(A_1, B_2)	(A_1, B_3)	(A_1, B_4)	

Primary Objective Find Multiple MTD's

- Goal: find an MTDC for each dose of Agent A
- Locate j^{*} ∈ {1,...,4} such that (A_i, B_{j*}) has DLT probability closest to the target rate φ for each i (i = 1, 2)

▶ i.e. find an MTD combination in each row *i* such that

$$(A_i, B_{j^*}) = \arg\min|\pi_{ij} - \phi|$$

Combination-toxicity Relationships

Assumptions

- Toxicity increases with increasing dose of each agent, holding the other agent fixed
- DLT probabilities increase up rows and across columns of matrix

Combination-toxicity Relationships

- Row 1 is at least the most toxic MTDC (i.e. the MTDC in row 1 will contain at least the largest dose of Agent B)
- For instance, suppose MTDC in row 1 is estimated to be (A_1, B_3)
 - If dose of A is fixed at A₂, MTD level of drug B must be lower than or equal to 3 (i.e. B₁, B₂, or B₃)

Relative Location of MTD's

- ▶ If MTD for A_1 is (A_1, B_{j^*}) , then MTD for A_2 is $(A_2, B_{j^*-\Delta_2})$; $\Delta_2 \in \{0, 1, 2, 3\}$
- > The truth could be any one of the four possible values for Δ_2
 - Use the data to estimate the relative location of the MTD between rows
- Similar strategy has been used for patient heterogeneity**

*O'Quigley J, Conaway MR. Stat Science 2010; 25: 202-16.

** O'Quigley J, lasonos A. Stat Biopharm Res 2014; 6: 185–197

Relative Location of MTD's Shifts of 0 or 1

 $\blacktriangleright \{\Delta_2 = 0\}$

(A_2, B_1)	(A_2, B_2)	(A_2, B_3)	(A_2, B_4)
(A_1, B_1)	(A_1, B_2)	(A_1, B_3)	(A_1, B_4)

 $\blacktriangleright \ \{\Delta_2 = 1\}$

Relative Location of MTD's Shifts of 2 or 3

• $\{\Delta_2 = 2\}$

(A_2, B_1)	(A_2, B_2)	(A_2, B_3)	(A_2, B_4)
(A_1, B_1)	(A_1, B_2)	(A_1, B_3)	(A_1, B_4)

► $\{\Delta_2 = 3\}$

Working Models

Targeting $\phi = 0.30$

• Model $m = 1 : \{\Delta_2 = 0\}$

$0.06^{ heta_1}$	$0.16^{ heta_1}$	$0.30^{ heta_1}$	$0.45^{ heta_1}$
0.06^{θ_1}	$0.16^{ heta_1}$	$0.30^{ heta_1}$	$0.45^{ heta_1}$

• Model
$$m = 2 : \{\Delta_2 = 1\}$$

0.16^{θ_2}	0.30^{θ_2}	0.45^{θ_2}	0.59^{θ_2}
0.06^{θ_2}	0.16^{θ_2}	0.30^{θ_2}	0.45^{θ_2}

Skeleton 1 = getprior(0.075,0.30,3,4)

Skeleton 2 = getprior(0.075,0.30,2,4)

Nolan A. Wages (UVA)

Working Models

Targeting $\phi = 0.30$

• Model $m = 3 : \{\Delta_2 = 2\}$

0.30^{θ_3}	$0.45^{\theta_{3}}$	$0.59^{\theta_{3}}$	$0.71^{\theta_{3}}$
$0.06^{\theta_{3}}$	$0.16^{\theta_{3}}$	0.30^{θ_3}	$0.45^{\theta_{3}}$

• Model
$$m = 4 : \{\Delta_2 = 3\}$$

0.30^{θ_4}	$0.45^{ heta_4}$	0.59^{θ_4}	$0.71^{ heta_4}$
0.01^{θ_4}	0.06^{θ_4}	0.16^{θ_4}	$0.30^{ heta_4}$

Skeleton 1 = getprior(0.075,0.30,1,4)

Skeleton 2 = getprior(0.075,0.30,4,4)

Nolan A. Wages (UVA)

Getting Trial Underway

Initial Escalation Scheme

- Choose a path for initial escalation scheme
- Follow path in the absence of DLT's, until first DLT is observed

	B_1	B_2	B_3	B_4
A_2	(A_2, B_1) –	$\rightarrow (A_2, B_2)$ –	$\rightarrow (A_2, B_3)$	(A_2, B_4)
	×			Ť
A_1	(A_1, B_1) –	$\rightarrow (A_1, B_2)$	(A_1, B_3) –	$\rightarrow (A_1, B_4)$

After each cohort inclusion...

- 1. Use adaptive model selection to choose working model most consistent with data
- 2. Update estimates of DLT probabilities, $\hat{\pi}_{ij}$, for each combination
- 3. Recommend a combination in each row with $\widehat{\pi}_{ij}$ closest to target rate ϕ

$$S = \{ (A_1, B_{j_1^*}), (A_2, B_{j_2^*}) \}$$

4. Randomize next patient to treatment in S

Extension To More Than 2 Rows

- ▶ If MTD for A_1 is (A_1, B_{j^*}) , then MTD for A_i is $(A_i, B_{j^*-\Delta_i})$
- ► Each model *m* consists of multiple Δ values $\{\Delta_2, \Delta_3, \dots, \Delta_I\}$, where $\Delta_2 \leq \Delta_3 \leq \cdots \leq \Delta_I$
- For instance, $m : \{\Delta_2 = 2, \Delta_3 = 3\}$

(A_3,B_1)	(A_3, B_2)	(A_3, B_3)	(A_3, B_4)	(A_3, B_5)	(A_3, B_6)
(A_2, B_1)	(A_2, B_2)	(A_2, B_3)	(A_2, B_4)	(A_2, B_5)	(A_2, B_6)
(A_1,B_1)	(A_1, B_2)	(A_1, B_3)	(A_1, B_4)	(A_1, B_5)	(A_1, B_6)

Simulation Studies

- Evaluated performance over four 3 × 6 combination-toxicity scenarios in Wang and Ivanova (2005)
- Sample size N = 60; Target DLT rate; $\phi = 0.20$
- Compared to Wang and Ivanova (2005), Yuan and Yin (2008).

Scenarios in Wang and Ivanova (2005)

	s_1	s_2	s_3	s_4	s_5	s_6
		Se	cenario 1			
Level 3	0.08	0.13	0.20	0.29	0.40	0.53
Level 2	0.05	0.08	0.13	0.20	0.29	0.40
Level 1	0.03	0.05	0.08	0.13	0.20	0.29
		Se	cenario 2			
Level 3	0.05	0.08	0.11	0.15	0.21	0.29
Level 2	0.04	0.06	0.09	0.13	0.18	0.25
Level 1	0.04	0.05	0.08	0.11	0.15	0.21
		Se	cenario 3			
Level 3	0.20	0.30	0.41	0.53	0.65	0.70
Level 2	0.10	0.20	0.25	0.32	0.41	0.50
Level 1	0.03	0.05	0.13	0.20	0.27	0.35
		Se	cenario 4			
Level 3	0.20	0.40	0.47	0.56	0.65	0.76
Level 2	0.08	0.13	0.20	0.32	0.41	0.50
Level 1	0.03	0.05	0.08	0.13	0.17	0.20

Assessing Performance Combined PCS

- In each row of the matrix, we are interested in how often each dose of Agent B is selected as the MTD
- Use the combined proportion of correct selection (CPCS) for each row i

0.25	0.23	0.33	0.18	0.02	0.00	
0.00	0.04	0.26	0.54	0.14	0.01	
0.00	0.03	0.13	0.53	0.27	0.04	
CPCS = 0.33 + 0.54 + 0.27 = 1.14						

Results i	n Scenario	1	of WI	(2005
-----------	------------	---	-------	-------

Some Results

	Scenario				
Method	1	2	3	4	
Proposed	1.31	1.62	1.73	1.36	
WI (2005)	1.14	1.54	1.32	0.99	
YY (2008)	1.03	1.25	1.46	1.04	

Concluding Remarks

- R package pocrm can be used to implement design
 - in the process of updating simulation functions
- Method has good properties in identifying multiple MTDCs
 - compares favorably with alternative methods in the area (WI, 2005; YY, 2008)
- Method could be applied to other two-dimensional dose-finding problems
 - rows could represent different treatment schedules or prognosis groups