Background	Methods	Results	Conclusions

Dose-finding for Multi-drug Combinations

Nolan A. Wages, Ph.D.

University of Virginia

September 16, 2011

Nolan A. Wages, Ph.D.

Dose-finding for Multi-drug Combinations

University of Virginia

Background	Methods	Results	Conclusions
Outline			

- Background
- Methods
- Results
- Conclusions

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Nolan A. Wages, Ph.D.

University of Virginia

Background	Methods	Results	Conclusions
Multiple-agent Tr	ials		

- In trials combining more than one drug, monotonicity assumption may not hold for every dose
- The ordering between toxicity probabilities of some combinations is unknown
- Toxicity probabilities now follow a "partial order"

Nolan A. Wages, Ph.D.

University of Virginia

• **Example:** Phase I study of Samarium Lexidronam / Bortezomib combination therapy (Berenson et al., 2009)

	Drug Combination					
Agent	d_1	d_2	d_3	d_4	d_5	d_6
Sm (mCi/kg)	0.25	0.5	1.0	0.25	0.5	1.0
Bortezomib (mg/m ²)	1.0	1.0	1.0	1.3	1.3	1.3

Nolan A. Wages, Ph.D.

Dose-finding for Multi-drug Combinations

University of Virginia

Background	Methods	Results	Conclusions
Partial Orderi	ng of Doses		

- The following order relationships between treatments are known

Strategy: specify all possible orderings of doses consistent

known with toxicity relationships.

Nolan A. Wages, Ph.D.

University of Virginia

.

Background	Methods	Results	Conclusions

Partial Ordering of Doses

This trial requires the investigation of the following *five* simple orders

• A random variable *M* indexes the set of possible simple orders

Image: A matrix

Background	Methods	Results	Conclusions
Toxicity Prol	bability Model		

• For a particular ordering, *m*, (*m* = 1, ..., *M*), the true probability of toxicity is modeled via a class of working models

$$R(x_j) = \Pr(Y_j = 1 | X_j = x_j) \approx \psi_m(x_j, a)$$

for $x_j \in \{d_1 ..., d_k\}$

Nolan A. Wages, Ph.D.

University of Virginia

Background	Methods	Results	Conclusions
Prior Information			

- Let p (m) = {p (1),..., p (M)} denote a discrete prior over the set of contending models
- Let g(a) represent the prior on the parameter a

Nolan A. Wages, Ph.D.

University of Virginia

<ロ> (四) (四) (日) (日) (日)

Likelihood Function

• Under ordering *m*, the likelihood of *a* is given by

$$L_m(\boldsymbol{a}|\Omega_j) = \sum_{\ell=1}^j \boldsymbol{y}_\ell \log \psi_m(\boldsymbol{x}_\ell, \boldsymbol{a}) + \sum_{\ell=1}^j (1 - \boldsymbol{y}_\ell) \log(1 - \psi_m(\boldsymbol{x}_\ell, \boldsymbol{a}))$$

given the data $\Omega_j = \{x_1, y_1, \dots, x_j, y_j\}$ for the first *j* patients.

Nolan A. Wages, Ph.D.

University of Virginia

Background	Methods	Results	Conclusions
Model Selecti	ion		

• The posterior probability of model *m* is given by

$$\pi(m|\Omega_j) = \frac{p(m) \int_{\mathcal{A}} L_m(a|\Omega_j) g(a) da}{\sum_{m=1}^{M} p(m) \int_{\mathcal{A}} L_m(a|\Omega_j) g(a) da}$$

University of Virginia

• Choose a single ordering, *h*, with the largest posterior model probability $\pi(m|\Omega_j)$

Nolan A. Wages, Ph.D.

Background	Methods	Results	Conclusions
Toxicity Prob	bability Estimat	es	

• Given h, toxicity probabilities estimates are given by

$$\hat{R}(d_i) = \psi_h(d_i, \hat{a}_h); \quad i = 1, \dots, k$$

• The next patient is then allocated to the dose combination with the estimated toxicity probability closest to the target.

.

Background	Methods	Results	Conclusions
Illustration			

• $R(d_1) = 0.04, R(d_2) = 0.07, R(d_3) = 0.20, R(d_4) =$

 $0.35, R(d_5) = 0.55$ and $R(d_6) = 0.70$.

- Target toxicity rate $\theta = 0.20$.
- The trial will treat n = 24 patients.
- For each ordering, we used the power model,

$$\psi_m(d_i, a) = \alpha^a_{mi}; \quad m = 1, \dots, 5; i = 1, \dots, 6$$

Image: A matrix

Nolan A. Wages, Ph.D.

University of Virginia

.

Working Models

Table: Working model for five simple orders

			Combinations				
М	Ordering	1	2	3	4	5	6
<i>m</i> = 1	1-2-3-4-5-6	0.01	0.07	0.20	0.38	0.56	0.71
<i>m</i> = 2	1-2-4-3-5-6	0.01	0.07	0.38	0.20	0.56	0.71
<i>m</i> = 3	1-2-4-5-3-6	0.01	0.07	0.56	0.20	0.38	0.71
<i>m</i> = 4	1-4-2-3-5-6	0.01	0.20	0.38	0.07	0.56	0.71
<i>m</i> = 5	1-4-2-5-3-6	0.01	0.20	0.56	0.07	0.38	0.71

Nolan A. Wages, Ph.D.

Dose-finding for Multi-drug Combinations

University of Virginia

ъ

Background	Methods	Results	Conclusions
Illustration			

Nolan A. Wages, Ph.D.

University of Virginia

Background	Methods	Results	Conclusions
Simulation Setu	JD		

- 3 different toxicity scenarios.
- Target toxicity rate $\theta = 0.20$.
- The trial will treat n = 24 patients.
- Tables present
 - percentage of MTD recommendation over 2000 simulated trials
 - 2 percentage of patients that were treated at each combination

Rac	ka	ind
Dau	ĸу	

Results

Dose	<i>d</i> ₁	<i>d</i> ₂	d ₃	d_4	d_5	d_6	%tox
$R(d_i)$	0.04	0.07	0.20	0.35	0.55	0.70	-
% Rec	0.02	0.23	0.47	0.26	0.01	0.00	0.23
% Exp	0.07	0.25	0.34	0.26	0.07	0.01	
$R(d_i)$	0.01	0.02	0.09	0.20	0.40	0.58	-
% Rec	0.00	0.02	0.36	0.47	0.14	0.00	0.20
% Exp	0.02	0.10	0.33	0.33	0.18	0.05	
$R(d_i)$	0.00	0.00	0.02	0.07	0.22	0.41	-
% Rec	0.00	0.00	0.14	0.16	0.58	0.12	0.17
% Exp	0.00	0.05	0.17	0.22	0.36	0.19	

Nolan A. Wages, Ph.D.

University of Virginia

- Sometimes, it may not be feasible to consider all possible orderings
- **Example:** Consider a trial investigating two agents, *A* and *B*. Suppose *A* has 4 dose levels and *B* has 4 dose levels.
- Therefore, a total of 16 drug combinations are under consideration

Background	Methods	Results	Conclusions
Matrix Orders			

Table: Drug combinations for 4×4 matrix order

Doses of	Doses of Drug B			
Drug A	1	2	3	4
4	<i>d</i> ₁₃	<i>d</i> ₁₄	<i>d</i> ₁₅	<i>d</i> ₁₆
3	d_9	d_{10}	d ₁₁	d_{12}
2	d_5	d_6	d_7	d_8
1	d_1	d_2	d_3	d_4

Nolan A. Wages, Ph.D.

Dose-finding for Multi-drug Combinations

< ≣ ► ≣ পি ৭ ৫ University of Virginia

(日)

Background	Methods	Results	Conclusions
Strategy for	r Matrix Orders		

- Assume that toxicity increases monotonically for each drug when the other drug is held fixed
- Use known ordering information to choose a "proper" subset of orderings
- Use "toxicity zones" as a guide for order selection

Strategy for Matrix Orders

Figure: An illustration of zoning a drug combination matrix

Background	Methods	Results	Conclusions
3 Possible	Orders		

$$\begin{array}{l} m=1 \quad d_1 \rightarrow d_2 \rightarrow d_5 \rightarrow d_3 \rightarrow d_6 \rightarrow d_9 \rightarrow d_4 \rightarrow d_7 \rightarrow d_{10} \\ \rightarrow d_{13} \rightarrow d_8 \rightarrow d_{11} \rightarrow d_{14} \rightarrow d_{12} \rightarrow d_{15} \rightarrow d_{16} \end{array} \\ m=2 \quad d_1 \rightarrow d_5 \rightarrow d_2 \rightarrow d_3 \rightarrow d_6 \rightarrow d_9 \rightarrow d_{13} \rightarrow d_{10} \rightarrow d_7 \\ \rightarrow d_4 \rightarrow d_8 \rightarrow d_{11} \rightarrow d_{14} \rightarrow d_{15} \rightarrow d_{12} \rightarrow d_{16} \end{array} \\ m=3 \quad d_1 \rightarrow d_5 \rightarrow d_2 \rightarrow d_9 \rightarrow d_6 \rightarrow d_3 \rightarrow d_{13} \rightarrow d_{10} \rightarrow d_7 \\ \rightarrow d_4 \rightarrow d_{14} \rightarrow d_{11} \rightarrow d_8 \rightarrow d_{15} \rightarrow d_{12} \rightarrow d_{16} . \end{array}$$

Nolan A. Wages, Ph.D.

ৰ≣ া ্ ি থ University of Virginia

(日)

Background	Methods	Results	Conclusions
Concluding	Remarks		

- Overall, the proposed design is competitive with existing methods for dose-finding in multi-agent trials
- When the true ordering is known, the design reduces to the CRM, making it compatible to single-agent trials. Therefore, it can be considered an extension of the CRM

Background	Methods	Results	Conclusions
Questions?			

Thank You!

Nolan A. Wages, Ph.D.

Dose-finding for Multi-drug Combinations

< ≣ ► ≣ পি ৭ ৫ University of Virginia

<ロ> <四> <四> <三</p>