Phase I Design for Multiple Treatment Schedules The Problem of Partial Ordering in Dose-finding

Nolan A. Wages, Ph.D.

Division of Translational Research & Applied Statistics University of Virginia School of Medicine

May 21, 2013

Nolan A. Wages, Ph.D.

May 21, 2013

不同 トイモトイモ

Outline

- Background
- Proposed Methods
- Results
- Conclusions

The Problem of Partial Ordering

- Multiple treatment schedules
- · Combinations of agents
 - Wages, Conaway and O'Quigley, 2011
 - Wages and Conaway, 2013

The Problem of Partial Ordering

- Fundamental assumption in Phase I designs is the monotonicity of the dose-toxicity curve
- Toxicity probabilities follow a "complete order"
- In dose-finding problems above, monotonicity assumption may not hold for every dose
- Toxicity probabilities now follow a "partial order"

Multiple Treatment Schedules

- Doses based on
 - 1 amount of agent given
 - 2 frequency with which it is administered
- · Each course of therapy is a distinct dose-schdule combination
- Goal: find a dose-schedule combination with acceptable toxicity

Example

- Dose-and-schedule dependent Phase I study of Everolimus (Tabernero et al., 2008)
- Patients were assigned to one of the following courses of therapy: everolimus at 20, 50 or 70 mg weekly or 5 and 10 mg daily.

	Doses in mg					
Schedule	5	10	20	50	70	
Daily	1	2				
Weekly			3	4	5	

Partial Orders

- · Monotonoicity with dose within each schedule
- Complete order: 3 4 5
- Ordering along diagonals is not fully known
- Going from 2 to 3 is an increase in dose but a "decrease" in schedule
- Partial order: 2 3 or 3 2

Overall Strategy for Partial Orders

- Determine between which combinations order relationships are completely known
 - Known: 1 2 and 3 4 5
- Begin by ordering by rows and columns
- Use diagonals as a guide for determining other orders
- **Goal:** specify all (or a reasonable subset of) possible orderings of combinations consistent w/ completely known toxicity relationships.

A B A A B A

Partial Ordering of Combinations

• There are a total of 10 possible complete orderings, five of which are:

(1)
$$1-2-3-4-5$$
 (columns)
(2) $3-4-5-1-2$ (rows)
(3) $1-3-2-4-5$ (diag)
(4) $3-1-2-4-5$ (diag)
(5) $1-3-4-2-5$ (diag)

• In general, a random variable *M* indexes the set of possible complete orders

(3)

Overall Strategy

- "Two-parameter" version of continual reassessment method
 - 1 Estimate the correct ordering of toxicity probabilities
 - Within the estimated ordering, use CRM to estimate toxicity probabilities

A B F A B F

Models and Inference

- Working model for probability of toxicity for dose-schedule combination *i* under ordering *m* is p^{θm}_{im}
- The *p_i* are standardized units representing the discrete dose levels (i.e. skeleton of the model)

Example of Working Model

Table : Working model consistent with each ordering

Ordering (M)	1	2	3	4	5
1	$(0.10)^{\theta_1}$	$(0.20)^{\theta_1}$	$(0.30)^{\theta_1}$	$(0.40)^{\theta_1}$	$(0.50)^{\theta_1}$
2	$(0.40)^{\theta_2}$	$(0.50)^{\theta_2}$	$(0.10)^{\theta_2}$	$(0.20)^{\theta_2}$	$(0.30)^{\theta_2}$
3	$(0.10)^{\theta_3}$	$(0.30)^{\theta_3}$	$(0.20)^{\theta_3}$	$(0.40)^{\theta_3}$	$(0.50)^{\theta_3}$
:			÷		

Allocation of Dose-schedule Combinations

- As data accumulates, estimate θ_m for each ordering by maximum likelihood estimation
- Choose the ordering that the data indicates to be the most likely
- Update estimates of toxicity probabilities for combinations within that ordering
- Next patient goes on dose combination with estimated toxicity probability closest to a target toxicity rate

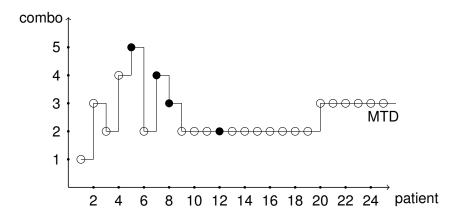
A B F A B F

Illustration

- Target toxicity rate is 20%
- The trial will treat n = 24 patients
- 10 possible complete orderings of toxicity probabilities

	Combinations					
	1	2	3	4	5	
True DLT prob.	0.05	0.10	0.20	0.33	0.45	

< 17 ▶


.

Initial Stage

- Partition the combinations into zones of "possible escalation treatments."
- Zone 1: lowest dose for each schedule (1 and 3)
- Zone 2: 2nd lowest dose for each schedule (2 and 4)
- Zone 3: remaining dose (5)
- Randomize pts within zones until DLT is observed or until zones are exhausted

4 3 5 4 3

Illustration Continued

< A

Simulated Results

- Each trial will treat n = 36 patients; Target rate is 20%
- Percent MTD selection over 2000 simulated trials; benchmark is CRM with known ordering
- R package pocrm

Results

Simulated Results

True DLT prob.	0.09	0.20	0.30	0.46	0.60
PO-CRM	0.22	0.43	0.31	0.03	0.00
CRM	0.20	0.54	0.24	0.02	0.00
True DLT prob.	0.05	0.10	0.20	0.33	0.45
PO-CRM	0.04	0.28	0.44	0.21	0.03
CRM	0.01	0.24	0.54	0.20	0.01
True DLT prob.	0.01	0.05	0.11	0.22	0.32
PO-CRM	0.01	0.15	0.16	0.48	0.19
CRM	0.00	0.01	0.29	0.52	0.18

Nolan A. Wages, Ph.D.

SCT Meeting Bostor

May 21, 2013

Concluding Remarks

- Generalization of the CRM
- "Partial order" CRM can applied to trials of
 - Multiple-drug combinations
 - Multiple treatment schedules
- Good properties in terms of recommending correct MTD combinations and allocating patients to desirable combinations (results not shown).

< 3 > < 3</p>

References

- Tabernero et al. Journal of Clinical Oncology 2008; 26: 1603–1610.
- Wages, Conaway and O'Quigley. Biometrics 2011; 67(4): 1555 1563.
- Wages, Conaway and O'Quigley. Clinical Trials 2011; 8(4): 380-389.
- Wages and Conaway. Pharmaceutical Statistics 2013; in press.

Questions?

Thank You!

Nolan A. Wages, Ph.D.

イロト イヨト イヨト イヨト