Continual Reassessment Method for Phase I Trials of Combined Drugs

Nolan A. Wages, Ph.D.

Division of Translational Research & Applied Statistics University of Virginia School of Medicine

May 19, 2014

< 回 ト < 三 ト < 三

Phase I Trials

- Initial safety trials
- Goal is to recommend a dose for further testing for efficacy in Phase II from a set of doses
- The highest dose with an "acceptable" rate of **dose-limiting toxicity (DLT)**, defined by protocol specific adverse events
 - Known as the maximum tolerated dose (MTD)
- Ultimate goal is to locate the MTD, while adhering to certain ethical considerations

★ ∃ > < ∃ >

Continual Reassessment Method (CRM)

- A statistical procedure that updates the information on the probabilities of dose-limiting toxicity (DLT) in light of the results obtained for **all** patients already observed
- Allocation rule to sequentially assign each incoming patient to one of the possible doses, with the intent of assigning doses ever closer to, and eventually recommending, the (MTD)

*Gasparini and Eisele, Biometrics 2000; 56: 609-615.

- A TE N - A TE N

Attributes of CRM

Working mathematical dose-toxicity model is assumed

```
Pr(DLT at dose i) \approx p_i^{\exp(\theta)}
```

- After each inclusion, update dose-toxicity curve based on accumulated data (# patients observed, # patients with DLT) at various dose levels.
- Assign next inclusion to dose with DLT rate estimated to be closest to target DLT rate
- After *n* patients, estimated MTD is dose recommended to the (*n* + 1)th patient

Drug Combination Studies

- Fundamental assumption in single-agent trials
 - Increase dose \rightarrow greater chance of DLT
 - Toxicity probabilities follow a "complete order"
- In trials combining more than one drug, fundamental assumption may not hold for every dose pair
 - Increase dose drug A, decrease dose drug B \rightarrow $\ref{eq:bound}$ chance of DLT
 - Toxicity probabilities now follow a "partial order"

- Phase I trial of a toll-like receptor (TLR) agonists with or without a form of incomplete Freund's adjuvant (IFA) for the treatment of melanoma.
- **Primary objective**: determine the highest dose of the combination (i.e. MTD combination)

	Doses of	Doses of IFA		
	TLR	0 0.5 3		3
Toxicity	1600			
increases	400			
↑	100			
↑	25			
	Toxicity increases \longrightarrow			

PI: Craig Slingluff, MD

A B F A B F

- Know some information regarding dose-toxicity relationship between available combinations.
- TLR dose 25 and IFA 0 is less toxic than all other combinations

Doses of		IFA	
TLR	0	0.5	3
1600			most
400			
100			
25	least		

- Know some information regarding dose-toxicity relationship between available combinations.
- TLR dose 400 and IFA 0.5 is less toxic than TLR dose 1600 and IFA 0.5

Doses of	IFA			
TLR	0	0.5	3	
1600		more		
400		less		
100				
25				

- Know some information regarding dose-toxicity relationship between available combinations.
- TLR dose 1600 and IFA 0.5 is less toxic than TLR dose 1600 and IFA 3

Doses of	IFA			
TLR	0	0.5	3	
1600		less	more	
400				
100				
25				

< 3 > < 3</p>

- Do not know some information regarding dose-toxicity relationship between available combinations.
- Which is more toxic? TLR dose 100 and IFA 0 or TLR dose 25 and IFA 0.5

Doses of	IFA			
TLR	0	0.5	3	
1600				
400				
100	??			
25		??		

- Do not know some information regarding dose-toxicity relationship between available combinations.
- Which is more toxic? TLR dose 100 and IFA 0 or TLR dose 25 and IFA 0.5

Doses of	IFA		
TLR	0	0.5	3
1600			
400	more		
100	less	more	
25		less	more

Overall Strategy

- Determine between which combinations order relationships are known
- Formulate **possible** orders of the combination-toxicity curve
- **Goal:** use known ordering information to choose a "proper" subset of orderings.
 - Intuition: if we knew which order was "correct," we could simply use CRM

★ ∃ > < ∃ >

- Phase I combination trial for pancreatic cancer patients
- Not all combinations need to options

Doses of	Doses of Drug B (mg/day)				
Drug A (mg/day)	500	750	1000	1250	1500
2					
1.5					
1					
0.5					

PI: Hanna Sanoff, MD

Nolan A. Wages, Ph.D.

SCT Meeting 2014

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

CRM for Drug Combinations

- "Two-parameter" version of CRM*
 - Estimate which ordering is most likely to represent the "correct" dose-toxicity curve
 - Within the chosen ordering, use CRM to estimate DLT probabilities and allocate combinations
- The "CRM-like" working model for the probability of DLT at combination *i* in possible ordering *m* is

Pr(DLT at combination *i*) $\approx p_{im}^{\exp(\theta_m)}$

*Wages, Conaway, O'Quigley. Biometrics 2011; 67: 1555-63.

*Wages, Conaway, O'Quigley. Clin Trials 2011; 8: 380-89.

A (10) A (10)

CRM for Drug Combinations

- After each cohort inclusion, estimate θ_m for each of the orderings by maximum likelihood
 - Choose ordering with largest likelihood
 - Using chosen ordering, update estimates of DLT probabilities for all combinations
 - Next patient goes on combination with estimated DLT probability closest to the target DLT rate

A (10) A (10)

Implementation in Drug Combo Trials

- Three investigator-initiated (FDA/IRB approved) studies at UVA Cancer Center (1 multi-site with MD Anderson)
- Consultation with biostatisticians at three other university cancer centers
- Statistical software available in ${\tt R}^{\star}$ (package ${\tt pocrm}$) can be used for
 - implementation in actual trials
 - simulation of operating characteristics

*Wages, Varhegyi. Computer Methods & Programs in Biomedicine 2013; 112: 211–218

Nolan A. Wages, Ph.D.	SCT Meeting 2014	May 19, 2014
-----------------------	------------------	--------------

Grouping Combinations Into Zones

- Know dose-toxicity relationship between combinations in different zones
 - Toxicity increases from Zone 1 to Zone 6
- Don't know dose-toxicity relationship between combinations within zones

Doses of	IFA		
TLR	0	0.5	3
1600	Zone 4	Zone 5	Zone 6
400	Zone 3	Zone 4	Zone 5
100	Zone 2	Zone 3	Zone 4
25	Zone 1	Zone 2	Zone 3

Grouping Combinations Into Zones

- Combination A is the least toxic combination
- B < C or C < B
- D < E < F or F < E < D, etc.

Doses of	IFA			
TLR	0	0.5	3	
1600		K	L	
400	F	Н	J	
100	С	Е	G	
25	А	В	D	

4 A N

- 4 The built

How To Choose Possible Dose-toxicity Relationships

- Use zones as a guide to specifying possible dose-toxicity relationships
- There may be many possibilities; not feasible to specify all
 - · Begin by ordering according to rows and columns
 - Use diagonals as a guide for determining other orders
 - Clinical information can help reduce the number
- A generic set can be used that works well in many situations*

*Wages, Conaway. Pharm Stats 2013; 12: 217-224

Getting Trial Underway

- Mathematically, we need at least one DLT and one non-DLT in order to estimate DLT probabilities
- Use an initial escalation scheme (Stage 1) until first DLT is observed
- Use zones to guide allocation in Stage 1

Stage 1 in Example 1

- Patients enrolled in cohorts of 2
- 2 Begin in Zone 1; if deemed safe (no DLT's), escalate to Zone 2
- If more than one combination contained within a zone, randomly assign cohort to combination within the zone
- Escalation to higher zone only occurs when all combos in lower zone have been tried and deemed safe
- 5 Once there is at least one DLT and one non-DLT, Stage 1 ends

Stage 2 in Example 1

- Stage 2 uses a set of 6 possible dose-tox relationships to model DLT probabilities
- 2 Uses dose-toxicity curve that best fits *all* accumulated data
- Within chosen dose-toxicity curve, use CRM to estimate DLT probabilities at each dose-combination
- Process is repeated after each included patient in Stage 2 until maximum sample size is reached or until stopping rule takes effect

A B K A B K

Concluding Remarks

- Overall, the proposed design is competitive with existing methods for dose-finding in multi-agent trials
- Simple extension of the well-known CRM
- Excellent properties when it is possible to write down all possible orderings (not shown)
- Good properties when a "proper" subset of orderings is used

A B F A B F

Acknowledgements

Statistical Collaborators:

- Gina Petroni, PhD
- Mark Conaway, PhD
- John O'Quigley, PhD
- Christopher Tait, MS
- Nikole Varhegyi, BS

Clinical Collaborators:

- Craig Slingluff, MD
- Paul Read, MD, PhD
- Paula Fracasso, MD, PhD
- Linda Duska, MD
- Timothy Showalter, MD
- Hanna Sanoff, MD