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Phase I Trials

I Initial safety trials

I Goal is to recommend a dose for further testing for efficacy
in Phase II

I The highest dose with an “acceptable” rate of
dose-limiting toxicity (DLT; yes/no), defined by protocol
specific adverse events

I Known as the maximum tolerated dose (MTD)

I Ultimate goal is to locate the MTD, while adhering to
certain ethical considerations



Overview of dose-finding

I Fundamental assumption: higher doses result in greater
chance of DLT (and efficacious response)

Drug X
Dose label d1 d2 · · · dJ

I Probability of DLT, R(d1) < R(d2) < · · · < R(dJ)

I Assign patient to next highest dose level, only if lower
doses are deemed “safe”



Dose-finding Design
Overview

I Phase I and phase I/II
I Small-group-sequential

I Adapt after every small cohort

I General design strategy
I Observe a few
I Estimate a “good” dose
I Treat at the good dose, and observe



Ethical Considerations in Phase I

I Minimize the number of patients treated at subtherapeutic
dose levels

I Minimize the number of patients treated at overly toxic
dose levels

I The trial design should quickly escalate through dose
levels in the absence of DLT’s and quickly de-escalate in
the existence of DLT’s

I Historically, sample sizes are small (i.e. 15–30).



Existing Phase I Designs

I “Rule-based” methods
I Variants of the “3+3” method
I Rolling six design

I “Model-based” methods
I Continual reassessment method (O’Quigley et al., 1990)
I Escalation with overdose control (EWOC; Babb et al.,

1998)

I “Model-assisted” methods (Yan, Madrekar, Yuan, 2017)
I Cumulative cohort design (CCD; Ivanova et al., 2007)
I Modified toxicity probability interval design (MTPI; Ji et al.,

2010)
I Bayesian optimal interval design (BOIN; Liu and Yuan,

2015)



Relative performance of competing designs

I Abundance of articles in statistical literature on the poor
operating characteristics of 3+31

I Despite poor operating characteristics, used in > 90% of
published phase I oncology trials2

I Model-assisted designs have better performance than 3+3,
but inferior performance compared to CRM (Horton et al.,
2017)

I Model-assisted designs are a special case of
semi-parametric dose finding methods (Clertant and
O’Quigley; JRSS-B, 2017)

1Iasonos A, et al. (2008). Clin Trials 5: 465–477.

2Paoletti et al. (2015). Ann Oncol 26: 1808–12.



Continual Reassessment Method (CRM)
O’Quigley, Pepe, and Fisher (Biometrics, 1990)

I “A statistical procedure that updates the information on the
probabilities of DLT in light of the results obtained for all
patients already observed”1

I “Allocation rule to sequentially assign each incoming
patient to one of the possible doses, with the intent of
assigning doses ever closer to, and eventually
recommending, the MTD”1

I MTD is defined as the dose level with DLT rate closest to a
predetermined target DLT rate θ; i.e. (20%, 25%, 30%,
etc.) so that

MTD = arg min
j
|R(dj)− θ|

1Gasparini and Eisele, Biometrics 2000; 56: 609–615.



Attributes of CRM

I Working mathematical dose-toxicity model is assumed.
I Choice in the functional form of model.

I CRM relies upon simple, under-parameterized models
I Not crucial to accurately estimate entire dose-toxicity curve

I Common choice is ‘empiric’ model1

R(dj) = Pr(DLT at dose dj) ≈ α
exp(a)
j ,

where 0 < αj < 1 are pre-specified constants (termed
skeleton) of the working model

1Note: Other model choices include one-parameter logistic or hyperbolic tangent model



CRM Specifications

I Model-based estimation of DLT probabilities can be done
in a Bayesian or frequentist framework

I Bayesian:
I Estimation based on posterior mean of a
I What is the prior distribution on the parameter a?

I Frequentist:
I Estimation based on maximum likelihood estimation of a
I We need at least 1 DLT and 1 non-DLT to fit the likelihood.
I How do we begin the trial to obtain this needed data?

I This talk will focus on the Bayesian version.



Inference
Bayesian CRM

I Data: D = {yj ,nj}, # DLT’s and patients at each dose

I Likelihood is given by

L(D | a) ∝
J∏

j=1

(
α

exp(a)
j

)yj
(

1− αexp(a)
j

)nj−yj

I Denote prior on a by f (a). Estimate DLT probability at each
dose

R̃(dj) = α
exp(ã)
j ; ã =

∫
a
L(D | a)f (a)∫
L(D | a)f (a)da

da



Dose-finding algorithm
CRM

1. After each cohort, update dose-toxicity curve, R̃(dj), based
on accumulated data at each dose level.

2. Assign next cohort to dose dj with DLT rate estimated to be
closest to target DLT rate; |R̃(dj)− θ|

I Usually restrict skipping a dose when escalating

3. Continue this process until a fixed number of n patients
have been observed (or a stopping rule is triggered).

4. MTD is the recommended dose level for the next (n + 1)th
patient, had one been included



Skeleton Choice

I Skeleton should be chosen to yield robust operating
characteristics

I “Reasonable” skeletons in CRM designs are defined by
adequate spacing between adjacent levels1

I Unreasonable choices:
I αj = {0.12,0.20,0.21,0.22,0.36}
I αj = {0.01,0.20,0.85,0.90,0.95}

I Algorithms available for choosing reasonable skeleton

1 O’Quigley, Zohar (2010). J Biopharm Stat 20: 1013–25



Algorithm for skeleton choice
Lee and Cheung (Clinical Trials, 2009)

I Recommendation is to use getprior(δ, θ, ν0, J) function in
R package dfcrm

I θ is target DLT rate (predetermined)

I J is the number of test dose levels (predetermined)
I ν0 is the prior MTD

I Place at median dose level (recommended)

I δ is a “spacing measure” termed the half-width
I Optimal range [0.04-0.08] for common values of θ

(recommended)



Choice of prior distribution
Lee and Cheung (Stat in Med, 2011)

I For empiric model, mean zero normal prior

a ∼ N (0, σ2
a)

I Prior variance σ2
a can calibrated

I Algorithm yields least informative normal prior
I Vague in terms of which dose is the MTD

I For a specified skeleton, R code available for calibrating
least informative prior

I http://faculty.virginia.edu/model-based_
dose-finding/

http://faculty.virginia.edu/model-based_dose-finding/
http://faculty.virginia.edu/model-based_dose-finding/


Illustration

I Trial testing J = 4 dose levels

Study dose level −1 1∗ 2 3
Dose label d1 d2 d3 d4

∗Note: Starting dose level is always 1, but dose label indexes the possible
number of study dose levels explored.

I Predetermined target DLT rate that defines the MTD,
θ = 0.20

I Skeleton choice getprior(0.05,0.20,2,4)

I Prior variance σ2
a = 0.27

I Cohort size 2 patients



Example: skeleton for 4 dose levels
getprior(0.05, 0.20, 2, 4)

dose
d1 d2 d3 d4

% DLT

25

50

75

100

Target (θ = 20%)



Example: working model for 4 dose levels
getprior(0.05, 0.20, 2, 4)

Dose labels
Model d1 d2 d3 d4

α
exp(a)
j 0.11exp(a) 0.20exp(a) 0.31exp(a) 0.42exp(a)



Illustration
1st cohort of 2 pts

I Suppose first two patients are put on d2 and no DLTs are
observed

I Accumulated data:

Dose d1 d2 d3 d4
# pts 0 2 0 0
# DLT’s 0 0 0 0



Updated DLT probabilities
After first cohort of 2 pts

I Data: D = {y2 = 0,n2 = 2}
I Posterior mean of a; ã = 0.18

Dose labels
d1 d2 d3 d4

0.11exp(0.18) 0.20exp(0.18) 0.31exp(0.18) 0.42exp(0.18)

≈ 0.07 ≈ 0.14 ≈ 0.24 ≈ 0.36



Updated curve after first cohort of 2 pts

dose
d1 d2 d3 d4

% DLT

25

50

75

100

Target (20%)

previous
updated



Illustration
2nd cohort of 2 pts

I Suppose second cohort of two patients is put on d3 and
one DLT is observed

I Accumulated data:

Dose d1 d2 d3 d4
# pts 0 2 2 0
# DLT’s 0 0 1 0



Updated DLT probabilities
After 2nd cohort of 2 pts

I Data: D = {y2 = 0, y3 = 1,n2 = 2,n3 = 2}
I Posterior mean of a; ã = 0.006

Dose labels
d1 d2 d3 d4

0.11exp(0.006) 0.20exp(0.006) 0.31exp(0.006) 0.42exp(0.006)

≈ 0.11 ≈ 0.20 ≈ 0.31 ≈ 0.42



Updated curve after 2 cohorts

dose
d1 d2 d3 d4

% DLT

25

50

75

100

Target (20%)

updated
previous



Simulated trial of 24 pts
Assumed true DLT probabilities {0.01, 0.09, 0.20, 0.36}

DLT
Non-DLT

patient

dose

1

2

3

4

2 4 6 8 10 12 14 16 18 20 22 24



Perceived reasons for infrequent use of CRM1

1. “Black-box” mentality, poor understanding of how it works
I Truth: Rooted in sound statistical principles

2. Sensitivity to choice of design specifications
I Working dose-toxicity model and prior distributions
I Truth: Published recommendations with robust

choices
3. Computationally burdensome

I Requires more time, effort, and personnel; regular
interaction between clinical and statistical team

I Truth: Bayesian CRM web tool provides computational
ease

1Cheung YK. Dose-finding by the continual reassessment method; CRC Press: New York, 2011.



Bayesian CRM Web Tool
https://uvatrapps.shinyapps.io/crmb/



Bayesian CRM Web Tool
https://uvatrapps.shinyapps.io/crmb/

I Simulates operating characteristics

Simulation Implementation

I Computes the recommended dose level for the next patient
based on accumulated data

Simulation Implementation



Bayesian CRM Web Tool
Simulation Input 1–2

1. Enter an assumed set of true DLT probabilities, separated by commas.
Note: The length of this set should be equal to the number of possible
study dose levels

True DLT probability at each dose level
0.01,0.09,0.20,0.36

2. Enter the target DLT rate

Target DLT rate
0.20



Bayesian CRM Web Tool
Simulation Input 3–5

3. Enter the cohort size required before the next model-based update.
Cohort size may be 1, 2, or 3 patients.

Cohort size
2

4. Enter the maximum sample size for the study. This number should be
a multiple of the cohort size entered above.

Maximum number of patients
24

5. Enter the number of simulations. A minimum of 1000 is
recommended.

Number of simulated trials
1000



Bayesian CRM Web Tool
Simulation Input 6–7

6. Enter the index of the starting dose level. Note: Index of lowest dose
level is always 1. If the design allows for ‘minus’ dose levels (i.e. -2, -1,
etc.), then the index of the starting dose should account for these
lower levels (i.e. if -1 dose level allowed, starting dose is 2.)

Index of starting dose level
2

7. Set the seed of the random number generator.

Random seed
580



Bayesian CRM Web Tool
Simulation Output

Skeleton of working model: 0.11 0.20 0.31 0.42
True DLT probability: 0.01 0.09 0.20 0.36
MTD selection percentage: 0.30 26.5 56.9 16.3
Average number of DLTs: 0.00 0.70 2.1 0.9
Average number of patients: 2.51 7.81 10.94 2.74
Percent stopped for safety: 0



Bayesian CRM Web Tool
Implementation Input 2–4

2. Enter number of observed DLTs at each dose level. If none have been observed
or a dose level has not yet been tried, enter ’0’. Note: The length of this set
should be equal to the number of possible study dose levels.

Number of observed DLTs at each dose level
0,0,0,0

3. Enter the number of patients evaluated for DLT at each dose level. If a dose
level has not yet been tried, enter ’0’. Note: The length of this set should be
equal to the number of possible study dose levels.

Number of patients evaluated for DLT at each dose level
0,2,0,0

4. Enter the most recent dose level administered in the study. Get updated
recommended dose level.

Current dose level
2



Bayesian CRM Web Tool
Implementation Output

Skeleton of working model: 0.11 0.20 0.31 0.42
Number of DLTs: 0 0 0 0
Number of patients: 0 2 0 0
Estimated DLT probabilities: 0.07 0.14 0.24 0.36
Target DLT rate: 0.20
Recommended dose level: 3



Bayesian CRM Web Tool
Updated Data

2. Enter number of observed DLTs at each dose level. If none have been observed
or a dose level has not yet been tried, enter ’0’. Note: The length of this set
should be equal to the number of possible study dose levels.

Number of observed DLTs at each dose level
0,0,1,0

3. Enter the number of patients evaluated for DLT at each dose level. If a dose
level has not yet been tried, enter ’0’. Note: The length of this set should be
equal to the number of possible study dose levels.

Number of patients evaluated for DLT at each dose level
0,2,2,0

4. Enter the most recent dose level administered in the study. Get updated
recommended dose level.

Current dose level
3



Bayesian CRM Web Tool
Updated Output

Skeleton of working model: 0.11 0.20 0.31 0.42
Number of DLTs: 0 0 1 0
Number of patients: 0 2 2 0
Estimated DLT probabilities: 0.11 0.20 0.31 0.42
Target DLT rate: 0.20
Recommended dose level: 2



Notes on web app
https://uvatrapps.shinyapps.io/crmb/

I Utilizes a set of default design specifications based on
practical recommendations from literature

I These specifications produce robust operating
characteristics.

I Contains the type of simulation information that aid
clinicians and reviewers in understanding operating
characteristics for the accuracy and safety of the CRM

I The bottom of the web page contains detailed notes about
the design specifications, including the skipping restriction
and safety stopping rule.

I For input in a protocol statistical section.



Conclusions on web app
https://uvatrapps.shinyapps.io/crmb/

I The web tool provides a mechanism for conducting the
Bayesian CRM in a timely and reproducible fashion,
requiring no programming knowledge.

I Free to access and use on any device with an internet
browser, including a smart phone.

I Can easily be used to compare CRM to other methods
with available software

I We hope this leads to broader implementation of CRM and
will facilitate more efficient collaborations within study
teams.



Evaluating performance

I Generate operating characteristics (OC) via simulation
studies.

I Accuracy
I % that correctly identify true MTD
I Accuracy index (next slide)

I Safety
I expected # of DLTs at each dose level
I % of patients treated above MTD; i.e., risk of overdosing

I Conducted under a broad range of assumed dose-toxicity
curves



Accuracy Index

I For a sample size of n, accuracy index of Cheung (2011)

An = 1− J ×
∑J

j=1 |R(dj)− θ|Pr(selecting dose j)∑J
j=1 |R(dj)− θ|

,

is a summary of the distribution of the selected dose
through its weighted average.

I Weights are the distances from R(dj) to θ

I Its maximum value is 1 with larger values (close to 1)
indicating that the method possesses high accuracy

1Cheung YK. Dose-finding by the continual reassessment method; CRC Press: New York, 2011.



Comparing methods
Challenges

I A conclusion may be reached under one set of assumed
curves that does not old under another set

I Can be the case for Bayesian design where the impact of
prior information can be difficult to evaluate

I How well does the prior align with some chosen truth?
I Can favor performance in certain situations and hinder in

others
I The choice of curves to show then becomes subjective

I Important to consider how well a design can possibly
perform.



Non-parametric optimal benchmark
O’Quigley, Paoletti, and Maccario (Biostatistics, 2002)

I Theoretical tool for simulation studies
I Upper bound on the accuracy of MTD selection for a binary

toxicity endpoint
I Gives a sense of the plausibility of a methods operating

characteristics
I Does not account for patient allocation
I Can only be used as a simulation tool, not in practice

I Assumes knowledge of true, underlying dose-toxicity curve

I Is it possible to outperform the benchmark?



Super-optimality

I O’Quigley et al. (2002) showed that it is not generally
possible to beat the benchmark based on the observations
themselves

I Admissible designs

I Super-optimality requires extraneous knowledge
I i.e., informative prior that favors the true MTD in a particular

scenario

I How would the design “always choose level 3” perform. . .
I when the true MTD is level 3?
I when the true MTD is some other level?



Simulating the benchmark R shiny
https://uvatrapps.shinyapps.io/nonparbnch/

1. Enter a set of assumed true DLT probabilities, separated by
commas. The length of this set should be equal to the number of
dose levels.

True DLT probability at each dose level
0.01,0.09,0.20,0.36

2. Enter the target DLT rate for the study.

Target DLT rate
0.20

3. Enter the number of simulated trials to be generated. A minimum
of 1000 is recommended.

Number of simulated trials
2000

4. Set the seed of the random number generator.

Random seed
580



R shiny app for non-parametric benchmark1

Simulation Output

I MTD selection percentage for each dose
I Percent correct selection (PCS) is 63.4%

I Accuracy Index

True DLT probability: 0.01 0.09 0.20 0.36
MTD selection percentage: 0.10 19.7 63.4 16.8
Accuracy index: 0.5765

1Wages and Varhegyi (Clinical Trials, 2017)



Performance of CRM relative to benchmark

I CRM has excellent statistical properties in terms of
correctly identifying, as the MTD, doses at and around the
target dose compared to the benchmark1

I Simulation study performed over 18 assumed dose-toxicity
scenarios

I Various target DLT rates: θ = {0.20,0.25,0.30}
I Various sample sizes: n = {20,25,30}
I Scenarios reflect a mixture of steep, flat, and intermediate

curves
I Various cohort sizes: 1, 2, or 3 patients.

I The following slide reports the accuracy index over the 18
scenarios.

1Wages, Conaway, O’Quigley (Clinical Trials, 2013)



Simulation results
Wages, Conaway , O’Quigley (Clinical Trials, 2013)
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Efficiency

I Over many scenarios, Cheung (2011) reported that CRM
is 86% efficient in terms of average PCS relative to the
benchmark

PCSCRM

PCSOptimal
= 86%

I Wages et al (2013) reported that CRM is 91% efficient in
terms of average accuracy index A relative to the
benchmark

ACRM

AOptimal
= 91%



Other available software
Web apps

I Comparison of simulated operating characteristics for
competing methods

I https://cqs.mc.vanderbilt.edu/shiny/
AdaptiveDesignS/

I Cannot be used for implementation of any design

I AplusB - operating characteristics of A+B designs
I https://graham-wheeler.shinyapps.io/AplusB/

I BOIN
I http://www.trialdesign.org/



CRM extensions

I Late-onset DLT
I Time-to-event (TITE) CRM (Cheung and Chappell, 2000)

I Multidimensional dose-finding problems
I Drug combinations (Wages et al., 2011)
I Different treatment schedules (Wages et al., 2014)
I Patient heterogeneity (Iasonos and O’Quigley, 2014)
I Toxicity and efficacy (Wages and Tait, 2015)



Thank you!

Questions?


