The Problem of Partial Ordering in Phase I Clinical Trials

Nolan A. Wages, Ph.D.

Division of Translational Research & Applied Statistics University of Virginia School of Medicine

June 6, 2012

Nolan A. Wages, Ph.D.

Partially Ordered Phase I Trials

June 6, 2012

(4) (5) (4) (5)

Outline

- Background
- Proposed Methods
- Results
- Application to matrix orders
- Conclusions

A (10) A (10) A (10)

Partial Order Problems

- Multiple treatment schedules
- Patient heterogeneity
- Combinations of agents

Multiple-agent Trials

- Fundamental assumption in Phase I designs is the monotonicity of the dose-toxicity curve
- · Dose-limiting toxicity (DLT) probabilities follow a "complete order"
- In trials combining more than one drug, monotonicity assumption may not hold for every dose
- Toxicity probabilities now follow a "partial order"
- Goal is to find the combination with a DLT probability closest to some pre-specified target toxicity rate.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial Ordering of Doses

• **Example:** Phase I study of Samarium Lexidronam / Bortezomib combination therapy (Berenson et al., 2009)

	Drug Combination					
Agent	$d_1 d_2 d_3 d_4 d_5 d_6$					d_6
Lexidronam (mCi/kg)	0.25	0.5	1.0	0.25	0.5	1.0
Bortezomib (mg/m ²)	1.0	1.0	1.0	1.3	1.3	1.3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial Ordering of Doses

• The following order relationships between treatments are known

• The following order relationships between treatments are unknown

1
$$d_2$$
 ? d_4
2 d_3 ? d_5

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Partial Ordering of Doses

This trial requires the investigation of the following *five* complete orders

$$\begin{array}{c} 1 \quad d_1 \rightarrow d_2 \rightarrow d_3 \rightarrow d_4 \rightarrow d_5 \rightarrow d_6 \\ 2 \quad d_1 \rightarrow d_2 \rightarrow d_4 \rightarrow d_3 \rightarrow d_5 \rightarrow d_6 \\ 3 \quad d_1 \rightarrow d_2 \rightarrow d_4 \rightarrow d_5 \rightarrow d_3 \rightarrow d_6 \\ 4 \quad d_1 \rightarrow d_4 \rightarrow d_2 \rightarrow d_3 \rightarrow d_5 \rightarrow d_6 \\ 5 \quad d_1 \rightarrow d_4 \rightarrow d_2 \rightarrow d_5 \rightarrow d_3 \rightarrow d_6 \end{array}$$

• A random variable *M* indexes the set of possible complete orders

Toxicity Probability Model

- Suppose there are *k* drug combinations d_1, d_2, \ldots, d_k ,
- Random variable Y = 1 in the case of a toxicity, Y = 0 otherwise
- There are *M* possible orderings of toxicity probabilities
- For a particular ordering, m, (m = 1, ..., M), the true probability of toxicity is modeled via a class of working models

$$R(x_j) = \Pr(Y_j = 1 | X_j = x_j) \approx \psi_m(x_j, a)$$

where $x_j \in \{d_1, \ldots, d_k\}$ is the combination given to the *j*th patient.

Likelihood Function

 After *j* inclusions, under ordering *m*, the log-likelihood of *a* is given by

$$L_{mj}(a) = \sum_{\ell=1}^{j} y_{\ell} \log \psi_{m}(x_{\ell}, a) + \sum_{\ell=1}^{j} (1 - y_{\ell}) \log(1 - \psi_{m}(x_{\ell}, a))$$

• For each of the *M* distinct orderings, $L_{mj}(a)$ can be maximized in order to generate an estimate, \hat{a}_m .

Model Selection

- We need some value of *m* so we weight each of the *M* candidate orderings as we make progress
- The weight of evidence in favor of model *m* is given by

$$\pi(m) = \frac{\exp\{L_{mj}(\hat{a}_m)\}}{\sum_{m=1}^{M} \exp\{L_{mj}(\hat{a}_m)\}}$$

• It's possible to put priors on particular orderings.

Toxicity Probability Estimates

- Choose a single ordering, h, with the largest ordering weight $\pi(m)$
- Given h, toxicity probabilities estimates are given by

$$\hat{R}(d_i) = \psi_h(d_i, \hat{a}_h) \qquad i = 1, \dots, k$$

The next patient is then allocated to the dose combination,
x_{j+1} = d_i, with the estimated toxicity probability closest to the target toxicity rate θ; i.e.

$$d_i = \arg\min_i |\hat{R}(d_i) - \theta|$$

4 **A** N A **B** N A **B** N

Results

Illustration

- $R(d_1) = 0.04, R(d_2) = 0.07, R(d_3) = 0.20, R(d_4) = 0.35, R(d_5) = 0.55$ and $R(d_6) = 0.70$.
- Target toxicity rate $\theta = 0.20$.
- The trial will treat n = 24 patients.
- For the example presented earlier, there were five complete orders associated with the partial order.
- We used the power model,

$$\psi_m(d_i, a) = \alpha_{mi}^a; \quad m = 1, \dots, 5; i = 1, \dots, 6$$

A B F A B F

Working Models

Table: Working model for five complete orders

		Combinations					
М	Ordering	1	2	3	4	5	6
<i>m</i> = 1	1-2-3-4-5-6	0.01	0.07	0.20	0.38	0.56	0.71
<i>m</i> = 2	1-2-4-3-5-6	0.01	0.07	0.38	0.20	0.56	0.71
<i>m</i> = 3	1-2-4-5-3-6	0.01	0.07	0.56	0.20	0.38	0.71
<i>m</i> = 4	1-4-2-3-5-6	0.01	0.20	0.38	0.07	0.56	0.71
<i>m</i> = 5	1-4-2-5-3-6	0.01	0.20	0.56	0.07	0.38	0.71

< ロ > < 同 > < 回 > < 回 >

Initial Stage

• Partition the combinations into zones of "possible escalation treatments."

Zone	Α	В	С	D
		d_2	d_5	
dose	d_1			d_6
		d_4	d ₃	

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Illustration Continued

Simulation Setup

- 3 different toxicity scenarios.
- Target toxicity rate $\theta = 0.20$.
- The trial will treat n = 24 patients.
- Tables present
 - percentage of MTD recommendation over 2000 simulated trials
 - 2 percentage of patients that were treated at each combination

Results

Results

Dose	<i>d</i> ₁	d ₂	d ₃	d_4	<i>d</i> ₅	d_6	% tox
$R(d_i)$	0.04	0.07	0.20	0.35	0.55	0.70	-
% Rec	0.02	0.23	0.47	0.26	0.01	0.00	22.6%
% Exp	0.07	0.25	0.34	0.26	0.07	0.01	
$R(d_i)$	0.01	0.02	0.09	0.20	0.40	0.58	-
% Rec	0.00	0.02	0.36	0.47	0.14	0.00	19.7%
% Exp	0.02	0.10	0.33	0.33	0.18	0.05	
$R(d_i)$	0.00	0.00	0.02	0.07	0.22	0.41	-
% Rec	0.00	0.00	0.14	0.16	0.58	0.12	17.4%
% Exp	0.00	0.05	0.17	0.22	0.36	0.19	

イロト イヨト イヨト イヨト

Matrix Ordering

- Sometimes, it may not be feasible to consider all possible orderings
- **Example:** Consider a recent trial run at UVA investigating two agents, *A* and *B*. Suppose *A* has 4 dose levels and *B* has 3 dose levels.
- Therefore, a total of 12 drug combinations are under consideration and suppose they are labeled as...

Matrix Ordering Continued

Doses of	Doses of Drug B			
Drug A	1	2	3	
4	<i>d</i> ₄₁	d ₄₂	<i>d</i> ₄₃	
3	d ₃₁	d ₃₂	d_{33}	
2	<i>d</i> ₂₁	d ₂₂	d_{23}	
1	d ₁₁	<i>d</i> ₁₂	d_{13}	

Nolan A. Wages, Ph.D.

June 6, 2012

イロト イ団ト イヨト イヨ

Strategy for Matrix Orders

- Assume that toxicity increases monotonically for each drug when the other drug is held fixed
- Use known ordering information to choose a "proper" subset of orderings
- Begin by ordering by rows and columns
- Use diagonals as a guide for the selection of other orders
- Recommend using a subset of six orderings

Strategy for Matrix Orders

Subset of Possible Orders

$$\begin{array}{l} m = 1 \quad d_{11} \rightarrow d_{12} \rightarrow d_{13} \rightarrow d_{14} \rightarrow \cdots \rightarrow d_{41} \rightarrow d_{42} \rightarrow d_{43} \text{ (rows)} \\ m = 2 \quad d_{11} \rightarrow d_{21} \rightarrow d_{31} \rightarrow d_{41} \rightarrow \cdots \rightarrow d_{23} \rightarrow d_{33} \rightarrow d_{43} \text{ (columns)} \\ m = 3 \quad d_{11} \rightarrow d_{12} \rightarrow d_{21} \rightarrow d_{13} \rightarrow \cdots \rightarrow d_{33} \rightarrow d_{42} \rightarrow d_{43} \text{ (diag)} \\ m = 4 \quad d_{11} \rightarrow d_{21} \rightarrow d_{12} \rightarrow d_{31} \rightarrow \cdots \rightarrow d_{42} \rightarrow d_{33} \rightarrow d_{43} \text{ (diag)} \\ m = 5 \quad d_{11} \rightarrow d_{12} \rightarrow d_{21} \rightarrow d_{31} \rightarrow \cdots \rightarrow d_{42} \rightarrow d_{33} \rightarrow d_{43} \text{ (diag)} \\ m = 6 \quad d_{11} \rightarrow d_{21} \rightarrow d_{12} \rightarrow d_{13} \rightarrow \cdots \rightarrow d_{33} \rightarrow d_{42} \rightarrow d_{43} \text{ (diag)} \\ \end{array}$$

イロト イヨト イヨト イヨト

Two-stage Design

- The first stage treats single patient cohorts until a DLT is observed
- At observance of first DLT, first stage closes. Second stage (modelling) begins
- Escalation in the first stage is based on grouping combinations into "toxicity zones"

First Stage for Matrix Orders

Figure: An illustration of zoning a drug combination matrix

First Stage Continued

- Trial begins in Zone 1. Patient 1 entered on d₁₁
- If no DLT, escalation proceeds to Zone 2. Patient 2 is given d₁₂ or d₂₁, chosen at random
- If no DLT, patient 3 is given the combination in Zone 2 that has not yet been tried
- Escalation to a higher zone occurs only when all combinations in the current zone have been tried

Scenario

Doses of	Doses of Drug B			
Drug A	1	2	3	
4	0.24	0.30	0.36	
3	0.16	0.22	0.28	
2	0.08	0.14	0.20	
1	0.03	0.06	0.12	

Nolan A. Wages, Ph.D.

<ロ> <問> <問> < 回> < 回> 、

% MTD Recommendation

Doses of	Doses of Drug B			
Drug A	1	2	3	
4	0.11	0.07	0.09	
3	0.10	0.15	0.11	
2	0.02	0.06	0.17	
1	0.03	0.02	0.06	

Nolan A. Wages, Ph.D.

Summary of Results

_

% Recommendation within \pm 5% of target	53%
% Stopped after 1st cohort	2.0%
Average trial size	21.7
Average % of DLT's	17.4%

イロト イヨト イヨト イヨト

Concluding Remarks

- Overall, the proposed design is competitive with existing methods for dose-finding in multi-agent trials
- Generalization of the CRM
- Good properties when it is possible to write down all possible orderings
- Good properties when a "proper" subset of orderings is used

A B F A B F

References

- Berenson, J. R., Yellin, O., Patel, R., et al. (Clinical Cancer Research 2009; 15: 1069 - 1075).
- Wages, Conaway and O'Quigley (Biometrics 2011; 67(4): 1555 -1563)
- Wages, Conaway and O'Quigley (Clinical Trials 2011; 8(4): 380-389)

Questions?

Thank You!

Nolan A. Wages, Ph.D.

Partially Ordered Phase I Trials

≣ ∽ ۹ June 6, 2012

イロト イヨト イヨト イヨト